

Bedienungsanleitung

MeasureEffect

Sonel-Messplattform

Bedienungsanleitung

MeasureEffect

Sonel-Messplattform

SONEL S.A.

Wokulskiego 11 58-100 Świdnica Polen

Version 3.03 24.01.2025

MeasureΞffect™

Willkommen auf der **Sonel MeasureEffect**TM-Plattform. Das ist ein umfassendes System, mit dem Sie Messungen durchführen, Daten speichern und verwalten sowie die Geräte auf mehreren Ebenen steuern können.

In diesem Dokument haben wir alle Funktionen der Plattform beschrieben. Die Funktionalitäten Ihres Messgeräts können eingeschränkter sein.

INHALT

1	Benutz	eroberfläche und Konfiguration	6
	1.1 Bild	schirmtastatur	6
	1.2 Mer	ü-Symbole	6
	13 Ges	ten	7
	14 Ren	utzerkonto	7
	141	Hinzufürgen und Bearbeiten von Benutzern	، 8
	142	Löschen von Benutzern	8
	1.4.3	Wechsel der Benutzer	
	1.5 Kon	figuration des Messgeräts – Haupteinstellungen	
	1.5.1	Sprache	
	1.5.2	Datum und Uhrzeit	9
	1.5.3	Zubehör	9
	1.5.4	Messgerät	9
	1.5.5	Messungen	10
	1.5.6	Information	10
	1.5.7	Messgerät auf die Werkseinstellungen zurücksetzen	11
2	Erste S	chritte	12
	2.1 Liste	e der Messfunktionen	
	2.2 Ist-M	Aesswerte	
	2.3 Fins	tellungen für die Messung	12
2	Vorbin	hungan	12
3	verbin		
	3.1 Elek	trische Sicherheit	13
	3.1.1	Verbindungen bei EPA-Messungen	
	3.1.1.1	Punkt-zu-Punkt-Widerstand – RP1-P2	
	3.1.1.2	Ablelt-Widelstand – Reg Oherflächenwiderstand – Reup	
	3.1.1.4	Volumenwiderstand – R _{VOL}	
	3.1.2	Verbindungen bei RISO-Messungen	
	3.1.3	Verbindungen bei RISO-Messungen – Messung mit AutoISO-2511 Adapter	20
	3.1.4	Verbindungen bei Messungen R _X , R _{CONT}	21
	3.1.5	Verbindungen bei Messungen U	21
	3.2 Sich	erheit der elektrischen Betriebsmittel	22
	3.2.1	Verbindungen bei I-Messungen mit der Zange	22
	3.2.2	Verbindungen bei I _Δ -Messungen mit der Zange	
	3.2.3	Verbindungen bei IPE-Messungen	
	3.2.4	Anschlusse bei Messungen von Geraten der Schutzklasse I, IA in der Steckdose, Isue, Riso	
	3.2.5	Anschlusse bei Messungen von Geraten der Schutzklasse II und III, Isub, IT, RISO	
	3.2.0	Verbindungen bei Riso-Messungen	
	3.2.1 3.2.2	Anschlüsse hei Messungen von IEC Coräten – Dies Part IEC	20
	320	Anschlüsse bei Messungen von PRCD-Geräten – NSO, NPE, ILC	20 27
	3 2 10	Anschlüsse hei Messungen von PEI V-Geräten	27 27
	3 2 11	Anschlüsse bei Messungen von stationären RCD-Geräten	27 27
	3.2.12	Anschlüsse bei Messungen con Schweißanlagen	
	3.2.12.1	Einphasen-Schweißgerät – messen von I _L , R _{ISO} , U ₀	
	3.2.12.2	Einphasen-Schweißgerät – messen von IP	
	3.2.12.3	Einphasen-Schweißgerät – messen von le mit dem PAT-3F-PE Adapter	
	3.2.12.4	EINPNASEN- ODER UTEIPNASEN-Schweilsgerat – messen von KISO	29 20
	3.2.12.0 3.2.12 F	Dreiphasen-Schweißgerät – messen von I _P mit dem PAT-3F-PE Adapter	
		· · · · · · · · · · · · · · · · · · ·	

	3.2.13	Verbindungen – Funktionsprüfung	31
	3.3 Fo		32
	3.3.1	Anschlusse bei Diodentests – Durchlassrichtung (F)	32
	3.3.Z	Anschlusse bei Sperfoldentesis – Durchlassrichlung (F), Sperffichlung (K)	32 22
	334	Verbindungen bei Messungen les Llos I-II	33
	335	Verbindungen bei P-Messungen	34
	3.3.6	Verbindungen bei R _{ISO} -Messungen	
	3.3.7	Verbindungen bei RISO PV-Messungen	35
4	Messi	ngen. Sichtprüfung	36
5	Messi	ngen. Elektrische Sicherheit	37
	5.1 DD	- Dielektrische Entladung	37
	5.2 EP	A – Messungen in EPA-Zonen	39
	5.3 Ra	mpTest – Messung mit stetig ansteigender Spannung	41
	5.4 Ris	o – Isolationswiderstand	43
	5.4.1	Messungen mit Drähten	43
	5.4.2	Messung mit AutoISO-2511 Adapter	45
	5.5 Ris	o 60 s – Absorptionskoeffizient (DAR)	47
	5.6 Ris	o 600 s – Polaritätsindex (PI)	49
	5.7 Rx	RCONT – Widerstandsmessung mit Niederspannung	51
	5.7.1	Autozero – Kalibrierung der Messleitungen	51
	5.7.2	R _X – Messen des Widerstandes	51
	5./.3	RCONT – Wigerstandsmessung von Schutzleitern und Potentialausgieichslei-ter mit ±200 mA Prutstrom	52
	5.0 SP	D – Tesis von Oberspännungsschutzgeraten	
	5.9 50	- Messung mit schrittweise ansteigender Spannung	5/
		Channing	
6		- Spannung	
6	Messu	- Spannung Ingen. Sicherheit der elektrischen Betriebsmittel	59 60
6	Messu 6.1 I _{Zar}	- Spannung I ngen. Sicherheit der elektrischen Betriebsmittel _{ge} – Messen des Stromes mit der Zange	59 60 60
6	Messu 6.1 Izar 6.2 I∆ -	- Spannung I ngen. Sicherheit der elektrischen Betriebsmittel _{ge} – Messen des Stromes mit der Zange - Differentialleckstrom	59 60 60 62
6	Messu 6.1 Izar 6.2 I∆ - 6.3 I⊥ -	- Spannung. I ngen. Sicherheit der elektrischen Betriebsmittel _{ge} – Messen des Stromes mit der Zange - Differentialleckstrom - Leckstrom im Schweißkreis	59 60 60 62 64
6	Messu 6.1 Izar 6.2 I∆ - 6.3 IL - 6.4 IP -	- Spannung. Ingen. Sicherheit der elektrischen Betriebsmittel ge – Messen des Stromes mit der Zange - Differentialleckstrom - Leckstrom im Schweißkreis - Leckstrom im Versorgungskreis des Schweißgeräts	59 60 62 64 66
6	Messu 6.1 IZar 6.2 I∆ - 6.3 IL - 6.4 IP - 6.5 IPE	- Spannung. Ingen. Sicherheit der elektrischen Betriebsmittel	59 60 62 64 66 68
6	Messu 6.1 Izar 6.2 I∆ - 6.3 IL - 6.4 IP - 6.5 IPE 6.6 ISUR	- Spannung. Ingen. Sicherheit der elektrischen Betriebsmittel	69 60 62 64 66 68 70
6	S.10 D = Messu 6.1 IZar 6.2 I∆ - 6.3 IL - 6.3 IL - 6.5 IPE 6.6 ISUI 6.7 IT -	- Spannung. Ingen. Sicherheit der elektrischen Betriebsmittel	69 60 62 64 66 68 70 72
6	S.10 G = 6.1 Izar 6.2 I∆ = 6.3 IL = 6.4 IP = 6.5 IPE 6.6 ISUI 6.7 IT = 6.8 IEC	- Spannung. Ingen. Sicherheit der elektrischen Betriebsmittel	59 60 62 64 64 66 68 70 72 74
6	S.10 G = 6.1 Izar 6.2 I∆ = 6.3 IL = 6.4 IP = 6.5 IPE 6.6 ISUI 6.7 IT = 6.8 IEC 6.9 PE	- Spannung. Ingen. Sicherheit der elektrischen Betriebsmittel	59 60 62 64 66 68 70 72 74 76
6	S.10 G = Messu 6.1 Izar 6.2 I∆ = 6.3 IL = 6.3 IL = 6.4 IP = 6.4 IP = 6.5 IPE 6.6 ISUI 6.7 IT = 6.8 IEC 6.9 PE 6.10 PR 6.10 PR	- Spannung. Ingen. Sicherheit der elektrischen Betriebsmittel	59 60 62 64 66 68 70 72 74 76 78
6	6.1 Izar 6.2 I∆ - 6.3 IL - 6.4 IP - 6.5 IPE 6.6 Isui 6.7 IT - 6.8 IEC 6.9 PE 6.10 PR 6.11 RC	- Spannung. Ingen. Sicherheit der elektrischen Betriebsmittel	59 60 62 64 64 66 70 72 74 76 78 80
6	S.10 G = Messu 6.1 Izar 6.2 I∆ = 6.3 IL = 6.3 IL = 6.4 IP = 6.4 IP = 6.5 IPE 6.6 ISUI 6.7 IT = 6.8 IEC 6.9 PE 6.10 PR 6.11 RC 6.12 Ris R 8	- Spannung. Ingen. Sicherheit der elektrischen Betriebsmittel	59 60 62 64 66 70 72 74 76 78 80 82
6	S.10 G = Messu 6.1 Izar 6.2 I∆ = 6.3 IL = 6.3 IL = 6.4 IP = 6.4 IP = 6.5 IPE 6.6 ISUI 6.7 IT = 6.8 IEC 6.9 PE 6.10 PR 6.11 RC 6.12 Ris 6.13 Ris	- Spannung. Ingen. Sicherheit der elektrischen Betriebsmittel	59 60 62 64 66 68 70 72 74 76 78 80 82 84
6	S.10 G = 6.1 Izar 6.2 I∆ = 6.3 IL = 6.4 IP = 6.5 IPE 6.6 ISUI 6.7 IT = 6.8 IEC 6.9 PE 6.10 PR 6.11 RC 6.12 Ris 6.13 Ris 6.14 RP	- Spannung. Ingen. Sicherheit der elektrischen Betriebsmittel	59 60 62 64 66 68 70 72 74 76 78 80 82 84 84
6	S.10 G 6.1 Izar 6.2 Ia 6.3 IL 6.4 IP 6.5 ISU 6.6 ISU 6.7 IT 6.8 IEC 6.9 PE 6.10 PR 6.11 RC 6.12 Ris 6.13 Ris 6.14 RPI	 Spannung. Ingen. Sicherheit der elektrischen Betriebsmittel	59 60 62 64 64 64 68 70 72 74 76 78 80 82 84 86 86
6	5.10 0 6.1 Izar 6.2 I∆ 6.3 I∟ 6.4 IP 6.5 IPE 6.6 ISU 6.7 IT 6.8 IEC 6.10 PR 6.11 RC 6.12 Ris 6.13 RIS 6.14 RPI 6.14.1 C 6.15 L	 Spannung	59 60 62 64 66 68 70 72 74 76 78 80 82 84 86 87
6	S.10 G 6.1 Izar 6.2 I∆ 6.3 I∠ 6.4 IP 6.5 IPE 6.6 ISUI 6.7 IT 6.8 IEC 6.10 PR 6.11 RC 6.12 Ris 6.13 RIS 6.14 RPI 6.14.1 6.14.2 6.15 U0 6.14 RPI 6.14 F	 Spannung	59 60 62 64 66 70 72 74 76 78 80 82 84 86 87 89
6	Messu 6.1 Izar 6.2 Ia 6.3 Ia 6.4 IP 6.5 IPE 6.6 ISUI 6.7 IT 6.8 IEC 6.10 PRE 6.10 PRE 6.11 RCS 6.12 RSS 6.13 RISE 6.14 Re-14.2 6.15 Uo 6.16 Fui 6.15 Uo 6.16 Fui	 Spannung	59 60 62 64 66 68 70 72 74 76 78 80 82 84 86 87 89 91
6	5.10 0 Messu 6.1 Izar 6.2 Ia 6.3 Ia 6.4 IP 6.5 IPE 6.6 Isuu 6.7 IT 6.8 IEC 6.9 PE 6.10 PR 6.11 RC 6.12 Ris 6.13 Ris 6.14 Rep 6.14 Rep 6.14 Rep 6.14 Rep 6.14 Ful 6.15 Uo 6.16 Ful Messu Z	- Spannung	59 60 62 64 66 68 70 72 74 76 78 80 82 84 88 87 89 91 93
6 7	5.10 0 Messu 6.1 Izar 6.2 Ia 6.3 Ia 6.4 IP 6.5 IPE 6.6 Isuu 6.7 IT 6.8 IEC 6.9 PE 6.10 PR 6.11 RC 6.12 Ris 6.13 Ris 6.14 Rep 6.14 Rep 6.14 Rep 6.14 Ru 6.15 Uo 6.16 Fui Messu 7.1 7.1 Dic	 Spannung	59 60 62 64 66 68 70 72 74 76 78 80 82 84 86 87 89 91 93
6 7	5.10 0 Messu 6.1 Izar 6.2 Ia 6.3 Ia 6.4 IP 6.5 IPE 6.6 Isun 6.7 IT 6.8 IEC 6.9 PE 6.10 PR 6.11 RC 6.12 Ris 6.13 Ris 6.14 Rep 6.14 Rep 6.14 Rep 6.14 Rep 6.14 Rue 6.14 Rue 6.15 Uo 6.16 Fui Messu 7.1 7.2 I-U	 Spannung Ingen. Sicherheit der elektrischen Betriebsmittel Differentialleckstrom Leckstrom im Schweißkreis Leckstrom im Versorgungskreis des Schweißgeräts Leckstrom im PE-Leiter Berührungsleckstrom Berührungsleckstrom IEC Anschlussleitungstest LV – PELV Test CD – Prüfen von PRCD Geräten (mit integriertem RCD) D – Messen von festangeschlossenen RCDs. ILN-S, Riso PE-S – Isolationswiderstand an Schweißgeräten Widerstand des Schutzleiters Autozero – Kalibrierung der Messleitungen R_{PE} – Widerstand des Schutzleiters Leerlaufspannung an Schweißgeräten ohne Last Integen. Fotovoltaik 	59 60 62 64 66 68 70 72 74 76 78 80 82 84 88 88 88 89 91 93 93

7.4	Isc – DC-Kurzschlussstrom	
7.5	P – Leistungsmessung	100
7.6	R _{ISO} – Isolationswiderstand	101
7.7	RISO PV – Isolationswiderstand in PV-Anlagen	103
7.8	Uoc – DC-spannung des offenen Stromkreises	105
8 A	Automatische Messungen	107
8.1	Automatische Messungen	
8.2	Messverfahren erstellen	
8.3	Multibox Funktion	109
8.4	Leitlinien	110
8	3.4.1 Fotovoltaik (DC)	110
9 B	Besondere Funktionen	111
9.1	R _{ISO} -Diagramme	111
9.2	Korrektur des Ergebnisses RISO auf die Referenztemperatur	113
g	0.2.1 Korrektur ohne Temperatursonde	
g	9.2.2 Korrektur mit Temperatursonde	
9.3	Korrektur der Ergebnisse auf STC-Bedingungen	
5	J.3.1 Verbindung zwischen IRM-1 und dem Messgerat	
g	9.3.3 Entkoppeln	
g	0.3.4 Korrektur der IRM-Anzeigen	
9.4	Aktuelle Messwerte der Umgebungsparameter	119
9.5	Etikettendruck	120
g	9.5.1 Anschließen des Druckers	
	9.5.1.1 Kabelgebundene Verbindung 9.5.1.2 Drahtlose Verbindung	
g	9.5.2 Druckeinstellungen	
g	0.5.3 Etikett mit dem Bericht drucken	
10 R	Ressourcen	124
10.	1 Datenbank für Photovoltaikmodule	124
11 S	Speicher des Messgeräts	125
11.	1 Struktur und Verwaltung des Speichers	
11.	2 Suchmaschine	125
11.	3 Eingabe von Messergebnissen in den Speicher	126
1	11.3.1 Vom Messergebnis zum Objekt im Speicher	
1	11.3.2 Vom Objekt im Speicher zum Messergebnis	
12 S	Software-Aktualisierung	127
13 F	ehlersuche	128
14 V	Veitere vom Prüfgerät angezeigte Informationen	129
14.	1 Elektrische Sicherheit	
14.	2 Sicherheit der elektrischen Betriebsmittel	
14.	3 Fotovoltaik	130
15 H	lersteller	132

1 Benutzeroberfläche und Konfiguration

1.1 Bildschirmtastatur

Die Bildschirmtastatur ist genauso funktionell wie die Tastatur auf jedem Touchscreen-Gerät.

q	W	е	r	t	у	u	i	0	р	×
а	S	d	f	g	h j	k	Ι	;	'	÷
z	х	с	v	b	n	m	/	^	_	►I
\mathbf{T}	!#1	Alt	-	,		ê	<	~	>	

1.2 Menü-Symbole

	Allgeme	ein	
\leftarrow	Zum vorherigen Fenster gehen	\checkmark	Das Element erweitern
A	Zurück zum Hauptmenü	^	Das Element reduzieren
?	Hilfe		Speichern
E→	Benutzer abmelden	×	Fenster schließen / Aktion abbrechen
_		(j)	Informationen
	Messung	gen	
+/-	Markierungen eingeben		Messung starten
+	Messobjekt hinzufügen	0	Messung beenden
菲	Messeinstellungen und Grenzwerte	5	Messung wiederholen
		\sim	Diagramm abrufen
	Speich	er	
Ð	Objekt hinzufügen	Q	Suchen
	Ordner hinzufügen	$\mathbf{\Lambda}$	Zum übergeordneten Ordner wechseln
[•D	Instrument hinzufügen		
11.	Messung hinzufügen		

1.3 Gesten

Starten Sie die Messung, indem Sie das Symbol 5 Sekunden lang gedrückt halten

Berühren Sie ein Element auf dem Touchscreen

1.4 Benutzerkonto

Sobald Sie angemeldet sind, erhalten Sie Zugriff auf das Menü Benutzerkonto. Das Vorhängeschloss-Symbol zeigt an, dass das Benutzerkonto passwortgeschützt ist.

	© 13:5	9 🖻 29.8.2024 😫 Admin		100%
1	÷	Benutzer		A
		Admin	6	
_		Lucas Laran	∂	`
		Hertz		
		Heinrich Hertz		`
		Ohm		
		Georg Ohm	⋳	`
		Tesla		
		Nikola Tesla		<i></i>
				+]

Benutzer werden für die Unterzeichnung von Forschungsauftragnehmern eingegeben. Das Instrument kann von mehreren Personen genutzt werden. Jeder kann sich als Benutzer mit eigenem Login und Passwort anmelden. Passwörter werden eingegeben, um zu verhindern, dass sich ein anderer Benutzer anmeldet. Der **Administrator** hat die Berechtigung, Benutzer einzutragen und zu löschen. **Andere Benutzer** können nur ihre eigenen Daten ändern.

- Es kann nur einen Administrator (admin) und maximal 4 Benutzer mit eingeschränkten Rechten in dem Messgerät geben.
- Die Benutzereinstellungen können nur von diesem Benutzer und dem Administrator geändert werden.
- Die Benutzereinstellungen können nur von diesem Benutzer und dem Administrator geändert werden.

1.4.1 Hinzufügen und Bearbeiten von Benutzern

- Um einen neuen Benutzer einzugeben, wählen Sie (+).
 Um die Details eines Benutzers zu ändern, wählen Sie (+).
 - Um die Details eines Benutzers zu ändern, wählen Sie den Benutzer aus.
 - Geben Sie dann seine oder ihre Details ein oder bearbeiten Sie sie.

Der neue Benutzer het die gleichen Einstellungen	wie Sie kenn eie eher önder
U Der neue Benutzer nat die gleichen Einstellungen	wie Sie, kann sie aber ander
Login Faraday	
Vor- und Nachname Michael Faraday	
Passwort	

Nachdem Sie das Vorhängeschloss berührt haben, können Sie ein Passwort eingeben, um auf das Benutzerkonto zuzugreifen. Berühren Sie es erneut, wenn Sie den Passwortschutz des Kontos deaktivieren möchten.

Speichern Sie schließlich die Änderungen.

1.4.2 Löschen von Benutzern

Um Benutzer zu löschen, markieren Sie sie und wählen Sie **1**. Die Ausnahme ist das Administratorkonto, das nur durch Zurücksetzen des Messgeräts auf die Werkseinstellungen gelöscht werden kann (Abschnitt 1.5.4).

1.4.3 Wechsel der Benutzer

2

3

Ĥ

Um den Benutzer zu wechseln, melden Sie den aktuellen Benutzer ab und bestätigen das Ende der Sitzung.

Dann können Sie den nächsten Benutzer anmelden.

1.5 Konfiguration des Messgeräts – Haupteinstellungen

Hier können Sie das Messgerät nach Ihren Wünschen konfigurieren.

1.5.2 Datum und Uhrzeit

Verfügbare Einstellungen:

- Datum.
- Uhrzeit.
- Zeitzone.

1.5.3 Zubehör

Hier finden Sie eine Auflistung des Zubehörs und dessen Konfigurationsmöglichkeiten.

1.5.4 Messgerät

Verfügbare Einstellungen:

- Kommunikation hier können Sie die verfügbaren Kommunikationsmittel konfigurieren.
- **Display** hier können Sie die Zeit, nach der sich der Bildschirm ausschaltet, aktivieren/deaktivieren, die Helligkeit einstellen, die Touch-Funktion des Bildschirms aktivieren/deaktivieren und die Größe der Schriftarten und Symbole in der Messansicht ändern.
- Auto off Hier können Sie die Zeit einstellen/deaktivieren, bis sich das Gerät automatisch ausschaltet.
- Geräusche Hier können Sie die Systemtöne aktivieren/deaktivieren.
- Update Hier können Sie die Gerätesoftware aktualisieren.
- **Spezialmodus** ermöglicht die Eingabe eines speziellen Service-Codes. Funktionalität, die dem Dienst gewidmet ist.
- Wiederherstellung Hier können Sie das Messgerät auf seine Werkseinstellungen zurücksetzen. Siehe auch Abschnitt 1.5.7.
- Messgerätstand Hier können Sie die Nutzung des internen Speichers überprüfen.

1.5.5 Messungen

Verfügbare Einstellungen:

- Netztyp Typ des Netzes, mit dem das Gerät verbunden ist.
- Netzfrequenz Spannungsfrequenz im Netz, an das das Gerät angeschlossen ist.
- Netzspannung Spannung des Netzes, mit dem das Gerät verbunden ist.
- Hochspannungsmeldungen anzeigen Anzeige von Hochspannungswarnungen.
- Warnung vor gefährlicher Spannung anzeigen Anzeige einer Warnung vor auftretender Hochspannung während der Messung.
- Behandeln die Verpolung der L-N-Leitung im IEC-Kabel als Fehler melden Sie, dass die L- und N-Leiter des IEC-Kabels miteinander vertauscht sind.
- Verzögerung der Messwerterfassung Hier können Sie die Verzögerung einstellen, mit der die Messung startet.
- Einschaltverzögerung des zu pr
 üfenden Ger
 äts Hier k
 önnen Sie die Verz
 ögerung einstellen, mit der sich das getestete Ger
 ät bei der Pr
 üfung seiner Sicherheit einschaltet.
- Visueller Test mit R L-N Bei aktiver Option prüft das Messgerät den Innenwiderstand des angeschlossenen Objekts auf z.B. Kurzschluss.
- Warnung bei nicht angeschlossenem Gerät einschalten Bei aktiver Option prüft das Messgerät, ob das zu prüfende Gerät daran angeschlossen ist.
- Automatische Erhöhung der Mess-ID Erstellung neuer Objekte im übergeordneten Ordner mit einer eindeutigen Mess-ID innerhalb der bestehenden Nummerierung.
- Automatische Erhöhung von Messungsnamen Erstellung neuer Namen für Speicherelemente entsprechend den zuvor eingegebenen Namen und Typen.
- **Temperatureinheit** Einstellung der Temperatureinheit, die angezeigt und im Ergebnis gespeichert wird, wenn die Temperatursonde angeschlossen ist.

1.5.6 Information

Sie können die Zählerdaten hier einsehen.

1.5.7 Messgerät auf die Werkseinstellungen zurücksetzen

In diesem Menü haben Sie mehrere Optionen.

- Optimierung des Speichers vom Messgerät. Verwenden Sie diese Funktion, wenn:
 - \Rightarrow es Probleme beim Aufzeichnen oder Ablesen von Messungen gibt,
 - \Rightarrow es Probleme beim Navigieren durch Ordner gibt.

Wenn die Reparatur nicht funktioniert, verwenden Sie die Funktion "Messwertspeicher zurücksetzen".

- Den Speicher des Messgeräts zurücksetzen. Verwenden Sie diese Funktion, wenn:
 - \Rightarrow die Reparatur des Speichers des Messgeräts nicht erfolgreich war

 \Rightarrow es Probleme gibt, die eine Nutzung des Speichers unmöglich machen Bevor Sie mit der Löschung beginnen, empfehlen wir Ihnen, die Daten auf einen Speicherstick oder einen Computer zu übertragen.

 Messgerät auf die Werkseinstellungen zurücksetzen. Alle gespeicherten Ordner, Messungen, Benutzerkonten und eingegebenen Einstellungen werden gelöscht.

Bestätigen Sie in jedem Fall nach der Auswahl der gewünschten Option Ihre Entscheidung und folgen Sie den Meldungen.

2 Erste Schritte

2.1 Liste der Messfunktionen

Die Liste der verfügbaren Messfunktionen variiert je nachdem, was an das Gerät angeschlossen ist.

- Standardmäßig werden Funktionen angezeigt, die keine Stromversorgung benötigen.
- Nach dem Anschließen der Stromversorgung kann sich die Liste der Funktionen erweitern.
- Sobald der AutolSO-Adapter angeschlossen ist, wird die Liste der verfügbaren Messfunktionen auf die f
 ür den Adapter bestimmten Funktionen eingeschr
 änkt.

2.2 Ist-Messwerte

In einigen Funktionen können Sie die vom Messgerät in einem bestimmten Messsystem angezeigten Werte anzeigen.

Wählen Sie die Messfunktion aus.

3

Wählen Sie das Symbol aus, um den Live-Messwertbereich einzublenden/auszublenden.

Durch Berühren des Feldes wird es auf die volle Größe erweitert. In dieser Form stellt es zusätzliche Informationen dar. Sie können es mit dem Symbol Schließen.

2.3 Einstellungen für die Messung

- +/- Im Menü Messung können Sie die Bezeichnungen der Drahtpaare in dem zu testenden Objekt eingeben oder bearbeiten. Die Namen können sein:
 - vordefiniert,
 - Ihre eigenen (nach Auswahl der Option Verwenden Sie Ihre eigenen Kabelmarkierungen).
 - +/- Die Beschriftungssymbole führen zu dem Fenster zum Bearbeiten der
 - L1/L2 Drahtpaarbezeichnungen. Neue Bezeichnungen können nicht mit den bereits eingegebenen identisch sein.

Das Symbol ruft das Fenster zum Hinzufügen der nächsten Drahtpaar-Messung auf.

Die Prüfung erfordert die entsprechenden Einstellungen. Es öffnet sich ein Menü mit Parametereinstellungen (unterschiedliche Parameter je nach ausgewählter Messung). Es öffnet sich ein Menü mit Parametereinstellungen (unterschiedliche Parameter je nach ausgewählter Messung).

Wenn Sie Grenzwerte festgelegt haben, zeigt das Messgerät an, ob das Ergebnis innerhalb dieser Grenzen liegt.

- O das Ergebnis liegt innerhalb der festgelegten Grenze.
- 💌 das Ergebnis liegt nicht innerhalb der festgelegten Grenze.
- 🧓 keine Bewertung möglich.

3 Verbindungen

3.1 Elektrische Sicherheit

3.1.1 Verbindungen bei EPA-Messungen

Die Anschlusslayouts variieren je nachdem, was Sie messen möchten.

3.1.1.1 Punkt-zu-Punkt-Widerstand - RP1-P2

3.1.1.3 Oberflächenwiderstand – RSUR

3.1.1.4 Volumenwiderstand - Rvol

3.1.2 Verbindungen bei RISO-Messungen

Während der Messung, insbesondere hoher Resistenzen, sollte sichergestellt werden, dass sich die Messkabel und Sonden nicht berühren, weil aufgrund des Durchflusses von Oberflächenströmen das Messergebnis durch einen zusätzlichen Messfehler belastet werden kann.

Die Standardmethode zur Messung des Isolationswiderstands (R_{ISO}) ist die Zweidrahtmethode.

Bei Stromkabeln sollte der Isolationswiderstand zwischen jedem Leiter und den anderen kurzgeschlossenen und geerdeten Leitern gemessen werden (**Abb. 3.1**, **Abb. 3.2**). Bei geschirmten Kabeln wird mit ihnen auch der Schirm kurzgeschlossen.

Abb. 3.1. Messung ungeschirmter Kabel

Abb. 3.2. Messung geschirmter Kabel

In Transformatoren, Kabeln, Isolatoren usw. gibt es **Oberflächenwiderstände**, die das Messergebnis verfälschen können. Um sie zu **eliminieren**, wird eine Drei-Draht-Messung unter Verwendung der **G** – GUARD-Buchse verwendet. Im Folgenden finden Sie Beispiele für die Anwendung dieser Methode.

Messung des Abwicklungswiderstands eines Transformators. Die G-Buchse des Zählers ist mit dem Trafokessel verbunden, die R_{ISO} + i R_{ISO} - Buchsen mit den Wicklungen.

Messung des Isolationswiderstands zwischen einer der Wicklungen und dem Trafokessel. Wir verbinden die G-Buchse des Messgeräts mit der zweiten Wicklung und die R_{ISO+} Buchse mit dem Erdpotenzial.

R_{ISO}- – Abgeschirmte Messleitung

Messung des Isolationswiderstands eines Kabels zwischen einem der Kabelleiter und seiner Abschirmung. Der Einfluss von Oberflächenströmen (wichtig bei rauen atmosphärischen Bedingungen) wird eliminiert, indem ein Stück Metallfolie an die G-Buchse des Messgeräts angeschlossen wird, das über die Isolierung des zu prüfenden Leiters gewickelt wird.

Ähnlich verhält es sich bei der Messung des Isolationswiderstandes zwischen zwei Kabeladern – die anderen Adern, die nicht an der Messung beteiligt sind, werden an die **G**-Klemme angeschlossen.

Messung des Isolationswiderstands von Hochspannungstrennschaltern. Die G-Buchse des Messgeräts ist mit den Isolatoren der Trennklemmen verbunden.

3.1.3 Verbindungen bei RISO-Messungen – Messung mit AutolSO-2511 Adapter

Je nach Messobjekt und den angenommenen Standards (jede Ader mit jeder oder jede Ader zu den übrigen miteinander geschalteten und geerdeten) erfordert die Messung des Isolationswiderstands von Leitungen oder mehradrigen Kabeln mehrere Anschlüsse. Um die Prüfzeit zu verkürzen und unvermeidliche Anschlussfehler zu vermeiden, empfiehlt Sonel einen Adapter, der die Umschaltung zwischen den einzelnen Adernpaaren für den Bediener übernimmt.

Adapter AutoISO-2511 dient zur Messung des Isolationswiderstandes von mehradrigen Kabeln und Leitungen mit einer Messspannung von bis zu 2500 V. Die Anwendung des Adapters schließt die Möglichkeit eines Fehlers aus und verkürzt die Zeit erheblich, die für die Durchführung von Isolationswiderstandsmessungen zwischen Leiterpaaren benötigt wird. Bei 4-adrigen Kabeln führt der Benutzer beispielsweise nur einen Schaltvorgang aus (d. h. er verbindet den Adapter mit dem Objekt), während der AutoISO-2511 sechs aufeinanderfolgende Verbindungen durchführt.

3.1.4 Verbindungen bei Messungen Rx, RCONT

Die Niederspannungswiderstandsmessung wird je nach den verfügbaren Messgeräten in einer der folgenden Varianten durchgeführt.

3.1.5 Verbindungen bei Messungen U

3.2 Sicherheit der elektrischen Betriebsmittel

3.2.1 Verbindungen bei I-Messungen mit der Zange

Umschließen Sie den entsprechenden Leiter mit der Zange.

3.2.2 Verbindungen bei I_Δ-Messungen mit der Zange

Umschließen Sie den L und N Leiter mit der Zange.

3.2.3 Verbindungen bei IPE-Messungen

Messen mit der Zange. Umschließen Sie mit der Zange den PE Leiter.

Messung über die Prüfdose. Verbinden Sie den Netzstecker des Prüflings mit der Prüfdose (a). Zusätzlich ist es möglich, die Messung über die Sonde an der Buchse T1 durchzuführen (b). 3.2.4 Anschlüsse bei Messungen von Geräten der Schutzklasse I, I∆ in der Steckdose, I_{S∪B}, R_{Iso}

I_{SUB}-Messung. Bei <u>SKI</u>: Verbinden Sie den Netzstecker des Prüflings mit der Prüfdose.

I_A-Messung über die Prüfdose. Verbinden Sie den Netzstecker des Prüflings mit der Prüfdose.

I_{SUB}-Messung über die Prüfdose. Verbinden Sie den Netzstecker des Prüflings mit der Prüfdose.

R_{ISO}-Messung über die Prüfdose. Verbinden Sie den Netzstecker des Prüflings mit der Prüfdose des Prüfgerätes. Die Messung wird zwischen L - N (kurzgeschlossen) gegen PE durchgeführt.

3.2.5 Anschlüsse bei Messungen von Geräten der Schutzklasse II und III, Isub, IT, RISO

I_{SUB}-Messung. <u>Bei</u> SKII und <u>leitfähigen nicht mit PE verbun-</u> <u>denen Teilen an SKI Geräten:</u> Schließen Sie die Sonde an Buchse **T2** und tasten Sie die berührbaren Teile am Prüfling ab.

I_T-Messung. Verbinden Sie den Netzstecker des Prüflings mit der Prüfdose. Schließen Sie die Sonde an Buchse **T2** an und tasten Sie alle berührbaren leitfähigen Teile ab (bei SK I Geräten – alle berührbaren nicht mit PE verbundenen Teile).

R_{ISO}-Messung. Verbinden Sie den Netzstecker des Prüflings mit der Prüfdose am Prüfgerät. L und N sind kurzgeschlossen. Schließen Sie die Sonde an die Buchse T2 an. Tasten Sie nun alle leitfähigen Teile am Gerät ab.

3.2.6 Verbindungen bei R_{ISO}-Messungen

Messung an SKI Geräten ohne die Prüfsteckdose. Verbinden Sie den kurzgeschlossenen L und N des Netzsteckers des Prüflings mit der Buchse T1. Mit der Sonde, angeschlossen an T2, tasten Sie dann alle metallischen leitfähigen Teile ab.

Dose-Sonde-Messung. Verbinden sie den Netzstecker des Prüflings mit der Prüfdose. Verbinden Sie die Sonde an der Buchse **T2** und tasten Sie alle berührbaren leitfähigen mit PE verbundenen Teile ab.

Sonde-Sonde-Messung. Verbinden Sie den PE des Prüflingsnetzsteckers mit der **T1** Buchse. Verbinden Sie die Prüfsonde mit der Buchse und tasten Sie alle berührbaren leitfähigen mit PE verbundenen Teile ab.

3.2.8 Anschlüsse bei Messungen von IEC-Geräten – RISO, RPE, IEC

3.2.9 Anschlüsse bei Messungen von PRCD-Geräten – IA, IPE, IT, RPE

3.2.10 Anschlüsse bei Messungen von PELV-Geräten

Verwenden Sie das 1,5 m Doppelprüfleitung, schließen Sie diese an die Buchse **T1** und stecken Sie den Prüfling in eine Netzsteckdose.

3.2.11 Anschlüsse bei Messungen von stationären RCD-Geräten

Verbinden Sie den Netzstecker mit der zu prüfenden Dose am RCD.

MeasureEffect | BEDIENUNGSANLEITUNG

3.2.12 Anschlüsse bei Messungen con Schweißanlagen

3.2.12.1 Einphasen-Schweißgerät – messen von IL, RISO, U0

IL-Messung. Variante, wenn das Schweißgerät vom Prüfgerät versorgt wird (nur 1-Phase, max. 16 A).

U₀-Messung. Variante, wenn das Schweißgerät vom Prüfgerät versorgt wird (nur 1-Phase, max. 16 A).

R_{ISO} LN-S- oder R_{ISO} PE-S-Messung. 1-phasiger Prüfling.

3.2.12.2 Einphasen-Schweißgerät – messen von IP

Messen über die Prüfdose. Die T1 Prüfleitung kann, muss aber nicht angeschlossen werden.

Messen mit dem PAT-3F-PE

1-Phasen 230 V Prüflings.

Anschluss

eines

Adapter.

3.2.12.3 Einphasen-Schweißgerät – messen von IP mit dem PAT-3F-PE Adapter

MeasureEffect | BEDIENUNGSANLEITUNG

3.2.12.4 Einphasen- oder Dreiphasen-Schweißgerät – messen von RISO

R_{Iso} LN-S- oder R_{Iso} PE-S-Messung. 3phasiger Prüfling oder 1-phasiger Prüflingsversorgung durch eine Industriesteckdose.

3.2.12.5 Dreiphasen-Schweißgerät – messen von I_L , U_0

IL-Messung. Variante, wenn das Schweißgerät direkt vom Netz versorgt wird.

U₀-Messung Variante, wenn das Schweißgerät direkt vom Netz versorgt wird.

3.2.12.6 Dreiphasen-Schweißgerät – messen von IP mit dem PAT-3F-PE Adapter

Messen mit dem PAT-3F-PE Adapter. Anschluss eines 3-Phasen 16 A Prüflings.

Messen mit dem PAT-3F-PE Adapter. Anschluss eines 3-Phasen 32 A Prüflings.

3.2.13 Verbindungen – Funktionsprüfung

Messen ohne Zange. Verbinden Sie den Netzstecker des Prüflings mit der Prüfdose am Prüfgerät.

Messen mit der Zange. Umschließen Sie mit der Zange den L-Leiter. Mit der Buchse T1 verbinden Sie die L und N Leiter des Prüflings.

3.3 Fotovoltaik

3.3.1 Anschlüsse bei Diodentests – Durchlassrichtung (F)

Schließen Sie die Messleitungen gemäß der Zeichnung an. Die Polarität beim Anschluss der Diode spielt keine Rolle – das Messgerät stellt sie vor der Messung automatisch ein.

3.3.2 Anschlüsse bei Sperrdiodentests – Durchlassrichtung (F), Sperrrichtung (R)

Schließen Sie die Messleitungen gemäß der Zeichnung an. Die Polarität beim Anschluss der Diode spielt keine Rolle – das Messgerät stellt sie vor der Messung automatisch ein.

3.3.3 Verbindungen bei I-Messungen

Umschließen Sie den entsprechenden Leiter mit der Zange.

- (a) DC-seitige Messung.
- (b) AC-seitige Messung.

3.3.4 Verbindungen bei Messungen Isc, Uoc, I-U

3.3.5 Verbindungen bei P-Messungen

Umschließen Sie den entsprechenden Leiter mit der Zange.

- a DC-seitige Messung.
- **b** AC-seitige Messung.

3.3.6 Verbindungen bei RISO-Messungen

Während der Messung, insbesondere hoher Resistenzen, sollte sichergestellt werden, dass sich die Messkabel und Sonden nicht berühren, weil aufgrund des Durchflusses von Oberflächenströmen das Messergebnis durch einen zusätzlichen Messfehler belastet werden kann.

Die Standardmethode zur Messung des Isolationswiderstands (R_{ISO}) ist die Zweidrahtmethode. Siehe auch Abschnitt 3.1.2.

(ein-

der

4 Messungen. Sichtprüfung

Fehlt der Aspekt, der für Sie wichtig ist, fügen ihn einfach der Liste hinzu.

Prüfung abschließen.

4

Der Bildschirm mit der Zusammenfassung der Prüfung wird angezeigt. Wenn Sie auf die Ergebnisleiste tippen, werden Ihre Auswahlmöglichkeiten aus Schritt 2 angezeigt. Wenn Sie zusätzliche Informationen über die Studie eingeben möchten, erweitern Sie das Feld Anlagen und füllen Sie das Kommentarfeld aus.

5 Messungen. Elektrische Sicherheit

5.1 DD – Dielektrische Entladung

Der Zweck der Prüfung ist es, den Grad der Feuchtigkeit in der Isolierung des Testobjekts zu überprüfen. Je höher der Feuchtigkeitsgehalt, desto größer ist der dielektrische Entladungsstrom.

Bei der Entladungsprobe des Dielektrikums wird der Entladungsstrom gemessen, der 60 Sekunden nach dem Ende der Messung der Isolation (Aufladung) auftritt. Der DD-Index ist eine Größe, die die Qualität der Isolation unabhängig von der Spannung der Probe charakterisiert.

Das Messprinzip lautet wie folgt:

- Zuerst wird die zu prüfende Isolation durch eine bestimmte Zeit mit Spannung geladen. Entspricht die Spannung der eingestellten Spannung nicht, wird das Objekt nicht geladen. Nach 20 Sekunden wird die Messung unterbrochen.
- Nach der Beendigung des Lade- und Polarisationsprozesses fließt durch die Isolation nur noch der Leckstrom.
- Folglich wird der Isolator entladen und durch die Isolation beginnt der gesamte Entladungsstrom des Dielektrikums zu fließen. Dieser Strom ist anfänglich die Summe des Entladestroms der Kapazität, der schnell verschwindet, und des Absorptionsstroms. Der Leckstrom ist vernachlässigbar, weil keine Prüfspannung vorhanden ist.

• Nach einer Minute ab dem Kurzschluss des Messkreises wird der fließende Strom gemessen. Der Wert der DD wird wie folgt berechnet:

$$DD = \frac{I_{1\min}}{U_{pr} \cdot C}$$

wobei gilt:

Innin – gemessener Strom, 1 Minute nach dem Stromkreis geschlossen wurde [nA],

U_{pr} – Prüfspannung [V],

C – Kapazität [µF].

Das Ergebnis der Messung gibt Aufschluss über den Zustand der Isolierung. Es kann mit der unten stehenden Tabelle verglichen werden.

DD Wert	Zustand der Isolation	
>7	Schlecht	(
4-7	Schwach	\odot
2-4	Akzeptabel	\odot
<2	Gut	\odot

Um eine Messung vorzunehmen, müssen Sie einstellen (글≟):

- Nominale Messspannung Un,
- gesamte Messzeit t,
- Grenzen (falls erforderlich).

Das Messgerät wird mögliche Einstellungen vorschlagen.

- Wählen Sie die Messung DD.
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie die Drähte gemäß Abschnitt 3.1.2.

Drücken Sie die **START**-Taste und halten Sie sie **5 Sekunden** lang gedrückt. Dadurch wird ein 5-Sekunden-Countdown **ausgelöst**, nach dem die Messung beginnt.

Sie können einen Schnellstart (ohne 5 Sekunden Verzögerung) durchführen, indem Sie die **START**-Taste bewegen.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

Während die Messung läuft, können Sie das Diagramm anzeigen (Abschnitt 9.1).

4 Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

Sie können auch jetzt das Diagramm anzeigen (Abschnitt 9.1).

5

Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren, erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wi

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN – in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde,

IM VORHERIGEN SPEICHERN – das Ergebnis in dem Ordner/Gerät speichern, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde.

In stark elektromagnetisch gestörten Umgebungen kann die Messung mit zusätzlichen Fehlern behaftet sein.

5.2 EPA – Messungen in EPA-Zonen

In EPA-Bereichen (eng. *Electrostatic Protected Area*) werden Materialien zum Schutz vor statischer Elektrizität (ESD) verwendet. Sie werden nach ihren Widerstands- und Widerstandseigenschaften klassifiziert.

Materialien zur Abschirmung von ESD-Entladungen – ein vollständiger Schutz dieser Art wird durch einen Faradayschen Käfig gewährleistet. Ein wichtiges Abschirmungsmaterial gegen statische Entladung ist leitfähiges Metall oder Kohlenstoff, das die Energie des elektrischen Feldes dämpft und abschwächt.

Leitende Materialien – zeichnen sich durch einen geringen Widerstand aus und lassen Ladungen schnell abfließen. Wenn das leitende Material geerdet ist, fließen Ladungen schnell ab. Beispiele für leitfähige Materialien: Kohlenstoff, Metall-Leiter.

Ladungsableitende Materialien – in diesen Materialien fließen die Ladungen langsamer zur Erde ab als bei leitenden Materialien, ihr zerstörerisches Potenzial ist geringer.

Isolierende Materialien – schwer zu erden. Statische Ladungen bleiben in dieser Art von Material lange Zeit erhalten. Beispiele für isolierende Materialien: Glas, Luft, gewöhnliche Kunststoffverpackungen.

Material	Kriterien
Materialien zur Abschirmung von elektrostatischen Entladungen	R _{VOL} > 100 Ω
Elektrisch leitfähige Materialien	$100 \ \Omega \le R_{SUR} \le 100 \ k\Omega$
Elektrisch ableitfähige Materialien	100 k $\Omega \le R_{VOL} \le 100 \text{ G}\Omega$
Isolierstoffe	R _{SUR} ≥ 100 GΩ

Um eine Messung vorzunehmen, müssen Sie einstellen (王):

- Messspannung U_n gemäß EN 61340-4-1: 10 V / 100 V / 500 V,
- Messzeit t gemäß der Norm EN 61340-4-1: 15 s ± 2 s,
- Messverfahren:
 - \Rightarrow Punkt-zu-Punkt-Widerstand **R**_{P1-P2},
 - \Rightarrow Punkt-zu-Erde-Widerstand **R**_{P-G},
 - \Rightarrow Oberflächenwiderstand **R**_{SUR},
 - \Rightarrow Kreuzwiderstand **R**_{VOL}.
- Grenzwerte siehe Bewertungskriterien gemäß EN 61340-5-1 (Tabelle unten).

Material	Kriterien
Flächen	R _{P-G} < 1 GΩ R _{P1-P2} < 1 GΩ
Fußböden	$R_{P-G} < 1 G\Omega$
Elektrisch leitfähige Verpackungen	$100 \ \Omega \leq R_{SUR} < 100 \ k\Omega$
Elektrisch ableitflähige Verpackungen	100 k $\Omega \le R_{SUR} \le 100 G\Omega$
Isolierende Verpackungen	R _{SUR} ≥ 100 GΩ

Detaillierte Anleitungen finden Sie in den Normen: IEC 61340-5-1, IEC/TR 61340-5-2, ANSI/ESD S20.20, ANSI/ESD S541 und in den Normen, auf die in den genannten Dokumenten verwiesen wird.

- Wählen Sie die Messung EPA.
- Wählen Sie das Messverfahren (Abschnitt 2.3).
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

2 Schließen Sie das Messsystem entsprechend dem gewählten Messverfahren an (Abschnitt 3.1.1).

3

Drücken Sie die **START**-Taste und halten Sie sie **5 Sekunden** lang gedrückt. Dadurch wird ein 5-Sekunden-Countdown **ausgelöst**, nach dem die Messung beginnt.

5 s

Sie können einen Schnellstart (ohne 5 Sekunden Verzögerung) durchführen, indem Sie die **START**-Taste bewegen.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

4

Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

© 09:09		94%
← EPA		f
Sestanden	১	•
Ø Bestanden	0	^
R _{P1-P2} = 10,10 MΩ		•
$U_{150} = 11 \text{ V}$ t = 10 s $U_{n} = 10 \text{ V}$ EPA = Re1e2 t [s] = 10 s Regular = V AL = 10 s		^

5

Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde,

5.3 RampTest – Messung mit stetig ansteigender Spannung

Die Rampenspannungsmessung soll bestimmen, bei welchem DC-Spannungswert die Isolierung durchstochen wird (oder nicht). Das Wesentliche der Funktion ist:

- die Untersuchung des Messobjektes mit einer ansteigenden Spannung bis zum Endwert Un,
- die Prüfung, ob das Objekt seine elektroisolierenden Eigenschaften beibehält, wenn die Höchstspannung U_n daran durch eine Sollzeit t_2 anhält.

Das Messverfahren wird im folgenden Diagramm dargestellt.

Grafik 5.1. Vom Messgerät angelegte Spannung als Funktion der Zeit für zwei Beispiele der Aufbaugeschwindigkeit

- Spannung U_n die Spannung, bei der das Wachstum gestoppt werden soll. Der Bereich reicht von 50 V...U_{MAX},
- Zeit t gesamte Messzeit,
- Zeit t₂ die Zeit, während der die Spannung am Prüfling gehalten werden soll (Grafik 5.1),
- Maximaler Kurzschlussstrom Isc -wenn das Messgerät während der Messung den eingestellten Wert erreicht, geht es in den Strombegrenzungsmodus über, d.h. es stoppt den weiteren Anstieg des Zwangsstroms bei diesem Wert,
- Leckstromgrenze I_L (I_L ≤ I_{sc}) wenn der gemessene Leckstrom den eingestellten Wert erreicht (es kommt zu einer Punktion des getesteten Objekts), wird die Messung unterbrochen und das Messgerät zeigt die Spannung an, bei der dies geschehen ist.

2

- Wählen Sie die Messung RampTest.
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie die Drähte gemäß Abschnitt 3.1.2.

4

5

Drücken Sie die **START**-Taste und halten Sie sie **5 Sekunden** lang gedrückt. Dadurch wird ein 5-Sekunden-Countdown **ausgelöst**, nach dem die Messung beginnt.

5 s

Sie können einen Schnellstart (ohne 5 Sekunden Verzögerung) durchführen, indem Sie die **START**-Taste bewegen.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste **der** gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

 \sim

Während die Messung läuft, können Sie das Diagramm anzeigen (Abschnitt 9.1).

Sie nach der Messung das Ergebnis ab. Lesen Sie nach der Messung das Ergebnis ab.

© 09:09 26.9.2024 . ● admin		94%
← RampTest (RT)		A
Bestanden	১	•
Ø Bestanden	~ ⑦	^
R _{ISO} = 10,02 MΩ		
U _{IBO} = 53 V I _L = 5,298 µA t = 51 s	PEICHERN	^
$U_n = 50 V$ (3+/- t [s] = 30 s t2 = 20 s $R_{ISO MIN}$	00 111	

Sie können auch jetzt das Diagramm anzeigen (Abschnitt 9.1).

Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde,

5.4 R_{ISO} – Isolationswiderstand

Das Gerät misst den Isolationswiderstand, indem es eine Messspannung U_n an den zu prüfenden Widerstand R anlegt und den durch ihn fließenden Strom I misst. Bei der Berechnung des Wertes des Isolationswiderstandes bedient sich das Messgerät der technischen Methode der Widerstandsmessung (R = U/I).

Um eine Messung vorzunehmen, müssen Sie einstellen (
⊒):

- Nominale Messspannung Un (sofern die Hardwareplattform dies zulässt),
- Messzeit t (sofern die Hardwareplattform dies zulässt),
- t₁, t₂, t₃-Zeiten, die zur Berechnung der Absorptionskoeffizienten benötigt werden,
- Grenzen (falls erforderlich).

Das Messgerät wird mögliche Einstellungen vorschlagen.

WARNUNG

Das gemessene Objekt darf nicht unter Spannung stehen.

5.4.1 Messungen mit Drähten

- Wählen Sie die Messung Riso.
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).
- Schließen Sie die Drähte gemäß Abschnitt 3.1.2.

1

Drücken Sie die **START**-Taste und halten Sie sie **5 Sekunden** lang gedrückt. Dadurch wird ein Countdown ausgelöst, während dessen das Messgerät keine gefährliche Spannung erzeugt und die Messung gestoppt werden kann, ohne testende Objekt zu entladen. Sobald der Countdown abgelaufen ist, wird die Messung **gestartet**.

5 s

Sie können einen Schnellstart (ohne 5 Sekunden Verzögerung) durchführen, indem Sie die **START**-Taste bewegen.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

Während die Messung läuft, können Sie das Diagramm anzeigen (Abschnitt 9.1).

4 Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

 U_{ISO} – Messspannung I_L – Leckstrom

Sie können auch jetzt das Diagramm anzeigen (Abschnitt 9.1).

Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde,

- Abschalten von t₂ deaktiviert gleichzeitig t₃.
- Die Timer-Messung wird erst dann gestartet, wenn sich die Spannung U_{ISO} stabilisiert hat.
- Meldung LIMIT I bedeutet, die Messung wird mit begrenzter Leistung durchgeführt. Dauert dieser Zustand länger als 20 Sekunden an, wird die Messung unterbrochen.
- Wenn das Messgerät nicht in der Lage ist, die Kapazität des Testobjekts aufzuladen, wird LIMIT I angezeigt und die Messung wird nach 20 s beendet.
- Ein kurzer Piepton markiert die 5-Sekunden-Intervalle. Wenn die Stoppuhr charakteristische Punkte (Zeiten t₁, t₂, t₃) erreicht, wird die Anzeige dieses Punktes 1 s lang angezeigt und ein langer Piepton ertönt.
- Liegt der Wert eines der gemessenen Wirkwiderstände außerhalb des Bereichs, wird der Wert des Absorptionskoeffizienten nicht angezeigt – es werden horizontale Striche angezeigt.
- Nach Beendigung der Messung, wird die Kapazität des Prüflings durch Kurzschließen von R_{Iso+} und R_{Iso}- über einen ca. 100 kΩ entladen. Die Meldung ENTLADEN und der U_{Iso}-Spannungswert, der dann am Objekt gehalten wird, werden angezeigt. U_{Iso} nimmt mit der Zeit ab, bis sie vollständig entladen ist.

5.4.2 Messung mit AutoISO-2511 Adapter

3

Wählen Sie die Messung R_{Iso}.

Schließen Sie den Adapter an gemäß Abschnitt 3.1.3.

Sobald der Adapter angeschlossen ist, wird die Liste der verfügbaren Messfunktionen auf die für den Adapter bestimmten Funktionen eingeschränkt.

Auf dem Bildschirm erscheint das Symbol für die Auswahl der Anzahl der Drähte des Testobjekts.

© 14:19		61%
← R _{ISO}		A
5 Leitungen		
	\sim	0
R _{ISO} =		
글는 R _{ISO} U _n = 2.500 V 오 L1-L2 t = 10 s R _{ISO MIN} = 100 kΩ		
R _{ISO MAX} =		
✓ U _N = 0 V m		

- Bestimmen Sie die Anzahl der Drähte des Testobjekts.
 - Geben Sie für jedes Darhtpaar die Messeinstellungen ein (Abschnitt 3.1.3).

4 Verbinden Sie den Adapter mit dem Testobjekt.

Drücken Sie die **START**-Taste und halten Sie sie **5 Sekunden** lang gedrückt. Dadurch wird ein Countdown ausgelöst, nach dem die Messung **gestartet** wird.

Sie können einen Schnellstart (ohne 5 Sekunden Verzögerung) durchführen, indem Sie die **START**-Taste bewegen.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

Während die Messung läuft, können Sie das Diagramm anzeigen (Abschnitt 9.1).

Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

 U_{ISO} – Messspannung II – Leckstrom

6

Sie können auch jetzt das Diagramm anzeigen (Abschnitt 9.1).

ignorieren und zum Messmenü zurückkehren, erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möch-

F

SPEICHERN – in den Speicher schreiben, SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstel-

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde,

N 🕞 🕞

IM VORHERIGEN SPEICHERN – das Ergebnis in dem Ordner/Gerät speichern, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde.

• Abschalten von t2 deaktiviert gleichzeitig t3.

ten, wird angezeigt),

- Die Timer-Messung wird erst dann gestartet, wenn sich die Spannung UISO stabilisiert hat.
- Meldung LIMIT I bedeutet, die Messung wird mit begrenzter Leistung durchgeführt. Dauert dieser Zustand länger als 20 Sekunden an, wird die Messung unterbrochen.
- Wenn das Messgerät nicht in der Lage ist, die Kapazität des Testobjekts aufzuladen, wird LIMIT I angezeigt und die Messung wird nach 20 s beendet.
- Ein kurzer Piepton markiert die 5-Sekunden-Intervalle. Wenn die Stoppuhr charakteristische Punkte (Zeiten t₁, t₂, t₃) erreicht, wird die Anzeige dieses Punktes 1 s lang angezeigt und ein langer Piepton ertönt.
- Liegt der Wert eines der gemessenen Wirkwiderstände außerhalb des Bereichs, wird der Wert des Absorptionskoeffizienten nicht angezeigt – es werden horizontale Striche angezeigt.
- Nach Beendigung der Messung, wird die Kapazität des Pr
 üflings durch Kurzschlie
 ßen von R_{Iso+} und R_{Iso}- über einen ca. 100 k
 Ω entladen. Die Meldung ENTLADEN und der U_{Iso}-Spannungswert, der dann am Objekt gehalten wird, werden angezeigt. U_{Iso} nimmt mit der Zeit ab, bis sie vollst
 ändig entladen ist.

5.5 R_{ISO} 60 s – Absorptionskoeffizient (DAR)

Absorptionskoeffizient (eng. *Dielectric Absorption Ratio* – DAR) bestimmt den Isolationszustand aus dem Verhältnis der zu den beiden Messzeitpunkten gemessenen Widerstände (R_{t1} , R_{t2}).

- Zeit t₁ ist die 15. oder die 30. Sekunde der Messung.
- Zeit t₂ ist die 60. Sekunde der Messung.

Der DAR-Wert wird mit der folgenden Formel berechnet:

$$DAR = \frac{R_{t2}}{R_{t1}}$$

wobei gilt:

Rt2 - in der Zeit t2 gemessener Widerstand,

 R_{t1} – in der Zeit t₁ gemessener Widerstand.

Das Ergebnis der Messung gibt Aufschluss über den Zustand der Isolierung. Es kann mit der unten stehenden Tabelle verglichen werden.

DAR Wert	Zustand der	r Isolation
<1	Schlecht	\odot
1-1,39	Schwach	·
1,4-1,59	Akzeptabel	\odot
>1,6	Gut	\odot

Um eine Messung vorzunehmen, müssen Sie zuvor einstellen (王):

- Messspannung **U**_n,
- Zeit t₁.

- Wählen Sie die Messung DAR (R_{Iso} 60 s).
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

2

3

1

Schließen Sie die Drähte gemäß Abschnitt 3.1.2.

Drücken Sie die **START**-Taste und halten Sie sie **5 Sekunden** lang gedrückt. Dadurch wird ein Countdown ausgelöst, während dessen das Messgerät keine gefährliche Spannung erzeugt und die Messung gestoppt werden kann, ohne testende Objekt zu entladen. Sobald der Countdown abgelaufen ist, wird die Messung **gestartet**.

Sie können einen Schnellstart (ohne 5 Sekunden Verzögerung) durchführen, indem Sie die **START**-Taste bewegen.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

4 Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

Sie können die Messergebnisse:

5

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde,

5.6 R_{ISO} 600 s – Polaritätsindex (PI)

Polaritätsindex (eng. *Polarization Index* – PI) bestimmt den Isolationszustand aus dem Verhältnis der zu den beiden Messzeitpunkten gemessenen Widerstände (R_{t1}, R_{t2}).

- Zeit t₁ ist die 60. Sekunde der Messung.
- Zeit t₂ ist die 600. Sekunde der Messung.

Der PI-Wert wird mit der folgenden Formel berechnet:

$$PI = \frac{R_{t2}}{R_{t1}}$$

wobei gilt:

Rt2 - in der Zeit t2 gemessener Widerstand,

R_{t1} – in der Zeit t₁ gemessener Widerstand.

Das Ergebnis der Messung gibt Aufschluss über den Zustand der Isolierung. Es kann mit der unten stehenden Tabelle verglichen werden.

PI Wert	Zustand der	Isolation
<1	Schlecht	\odot
1-2	Schwach	\odot
2-4	Akzeptabel	\odot
>4	Gut	\odot

Um die Messung durchzuführen, muss zunächst (五) eingestellt werden, Messspannung Un.

1

3

- Wählen Sie die Messung PI (R_{Iso} 600 s).
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie die Drähte gemäß Abschnitt 3.1.2.

Drücken Sie die **START**-Taste und halten Sie sie **5 Sekunden** lang gedrückt. Dadurch wird ein Countdown ausgelöst, während dessen das Messgerät keine gefährliche Spannung erzeugt und die Messung gestoppt werden kann, ohne testende Objekt zu entladen. Sobald der Countdown abgelaufen ist, wird die Messung **gestartet**.

Sie können einen Schnellstart (ohne 5 Sekunden Verzögerung) durchführen, indem Sie die **START**-Taste bewegen.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

4 Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

5

Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde,

IM VORHERIGEN SPEICHERN – das Ergebnis in dem Ordner/Gerät speichern, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde.

Der PI-Wert sollte nicht als verlässliche Bewertung des Isolationszustandes angesehen werden, wenn er während einer Messung ermittelt wurde, bei der die R_{t1} > 5 G Ω .

5.7 Rx, RCONT – Widerstandsmessung mit Niederspannung

5.7.1 Autozero – Kalibrierung der Messleitungen

Um den Einfluss des Messleitungswiderstandes auf das Messergebnis zu eliminieren, muss eine Kompensation (Nullen) der Leitungen durchgeführt werden.

Wählen Sie Autozero.

Schließen Sie die zur Messung von R_X oder R_{CONT} verwendeten Messleitungen kurz zusammen. Das Messgerät misst den Widerstand der Messleitungen dreimal. Sie erhalten dann das **Ergebnis abzüglich** dieses Widerstands, während im Fenster der Widerstandsmessung **Autozero (Ein)** angezeigt wird.

Um die **Drahtwiderstandskompensation** zu **deaktivieren**, wiederholen Sie **Schritt 2a** mit offenen Messdrähten und drücken Sie **()**. In diesem Fall enthält das Messergebnis den **Widerstand der Messdrähte** und im Fenster der Widerstandsmessung wird **Autozero (Aus)** angezeigt.

5.7.2 Rx – Messen des Widerstandes

Wählen Sie die Messung R_x.

Schließen Sie die Drähte gemäß Abschnitt 3.1.4.

Die Messung wird automatisch gestartet und kontinuierlich fortgesetzt.

5.7.3 R_{CONT} – Widerstandsmessung von Schutzleitern und Potentialausgleichslei-ter mit ±200 mA Prüfstrom

Schließen Sie die Drähte gemäß Abschnitt 3.1.4.

Drücken Sie auf START.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

4 Lesen Sie nach der Messung das Ergebnis ab. Auch jetzt können Sie durch Berühren der Punkteleiste die Teilergebnisse der Messung anzeigen.

Das Ergebnis ist der arithmetische Wert aus zwei Messungen, durchgeführt mit 200 mA positiver R_{CONT+} und negativer Polarität R_{CONT-} .

$$R = \frac{R_{CONT+} + R_{CONT-}}{2}$$

2

3

Sie können die Messergebnisse:

5

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde,

5.8 SPD – Tests von Überspannungsschutzgeräten

Überspannungsschutzgeräte SPD (englisch: *Surge Protection Device*) werden in Objekten mit und ohne Blitzschutzanlagen eingesetzt. Sie gewährleisten die Sicherheit der Elektroinstallation bei unkontrolliertem Spannungsanstieg im Netz, z.B. durch Blitzeinschlag. Überspannungsschutzgeräte zum Schutz elektrischer Anlagen und daran angeschlossener Geräte basieren meist auf Varistoren oder Funkenstrecken.

Überspannungsschutzgerät vom Typ Varistor unterliegen Alterungsprozessen: Der Ableitstrom, der bei Neugeräten 1 mA beträgt (so schreibt das auch die Norm EN 61643-11 vor), steigt mit der Zeit an, was zu einer Überhitzung des Varistors führt, was wiederum zu einem Kurzschluss seiner Struktur führen kann. Wichtig für die Lebensdauer des Überspannungsschutzgerätes sind auch Umgebungsbedingungen, unter denen er installiert wurde (Temperatur, Luftfeuchtigkeit usw.) und die Anzahl der ordnungsgemäß zur Erde abgeleiteten Überspannungen.

Das Überspannungsschutzgerät wird durchschlagen (leitet den Überspannungsimpuls zur Erde ab), wenn die Überspannung seine höchste Dauerbetriebsspannung U_C überschreitet. Mit dem Test können Sie feststellen, ob dies korrekt durchgeführt wird. Das Messgerät legt mit einer bestimmten Stirnsteilheit eine immer höhere Spannung an den Überspannungsschutzgerät an und prüft bei welchem Wert ein Leckstrom von 1 mA auftritt.

Es wird zwischen AC- und DC- Überspannungsschutzgeräte unterschieden. Die Messung erfolgt mit Gleichspannung. Wenn das zu prüfende Überspannungsschutzgerät mit Wechselspannung arbeitet, wird das Ergebnis nach der folgenden Formel von Gleichspannung in Wechselspannung umgerechnet:

$$U_C = \frac{U_{DC}}{1,15\sqrt{2}}$$

Ein Überspannungsschutzgerät kann als fehlerhaft angesehen werden, wenn **die höchste Dauerbe-**triebsspannung U_c:

- zu hoch ist (z. B. 30% höher als vom Hersteller angegeben) dann ist die durch das Überspannungsschutzgerät geschützte Installation nicht vollständig geschützt, da kleinere Überspannungsstöße in sie eindringen können,
- zu niedrig ist das bedeutet, dass das Überspannungsschutzgerät Signale nahe der Nennspannung gegen Erde ableiten kann.

Vor dem Test:

- überprüfen Sie die sicheren Spannungen für das getestete das Überspannungsschutzgerät. stellen Sie sicher, dass Sie es mit den von Ihnen eingestellten Testparametern nicht beschädigen. Bei Schwierigkeiten befolgen Sie die Norm EN 61643-11 oder die Richtlinien des Herstellers des Überspannungsschutzgerätes,
- trennen Sie das Überspannungsschutzgerät von der Spannung trennen Sie die Spannungsleitungen davon oder entfernen Sie den zu pr
 üfenden Einsatz.

Um eine Messung vorzunehmen, müssen Sie einstellen (
⊒:):

- Spannungstyp, mit der das Überspannungsschutzgerät arbeitet (AC oder DC),
- Messspannung R_{Iso} U_n maximale Spannung, die an das Überspannungsschutzgerät angelegt werden kann. Auch die Stirnsteilheit (Anstiegsgeschwindigkeit) hängt von deren Wahl ab (1000 V: 200 V/s, 2500 V: 500 V/s),
- Spannungsgrenze U_{C MAX} Parameter, der auf dem Gehäuse des getesteten Überspannungsschutzgerätes angegeben ist. Dies ist die maximale Spannung, bei der kein Durchschlag auftreten sollte.
- Toleranzbereich U_c ToL [%] f
 ür die tatsächliche Durchbruchspannung. Er bestimmt den U_c MIN...U_c MAX-Bereich, in den die tatsächliche Betriebsspannung des Überspannungsschutzgerätes passen sollte, wobei:

$$U_{C} MIN = (100\% - U_{C TOL}) U_{C MAX}$$

 $U_{C} MAX = (100\% + U_{C TOL}) U_{C MAX}$

Der Toleranzwert ist den Herstellerunterlagen zu entnehmen, z.B. der Katalogkarte. Die Norm EN 61643-11 erlaubt maximal 20% Toleranz.

- Wählen Sie die Messung SPD.
 - Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie die Messleitungen:

- + an den Phasenklemme des Überspannungsschutzgerätes an,
- - an die Klemme an, die das Überspannungsschutzgerät mit der Erde verbindet.

4

2

Drücken Sie die **START**-Taste und halten Sie sie **5 Sekunden** lang gedrückt. Dadurch wird ein 5-Sekunden-Countdown **ausgelöst**, nach dem die Messung beginnt.

5 s

Sie können einen Schnellstart (ohne 5 Sekunden Verzögerung) durchführen, indem Sie die **START**-Taste bewegen.

Die Prüfung wird fortgesetzt, bis das Überspannungsschutzgerät durchschlagen ist oder die Taste
gedrückt wird.

Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

© 09:23 🗎 26.9.2024 😫 admin		90%
\leftarrow SPD (U _c)		A
Bestanden	5	•
Sestanden	0	^
U _c = 275 V		
UcDc = 447 V @LIMIT !! SPD: Variste	or 5 SPEICHERN	~
Spannungstyp = AC R _{iso} U _n = 1.000 V	U _{c MIN} = 20	

Für AC-Überspannungsschutzgeräte

 U_c – Überspannungsschutzgerät Durchschlagsspannung (AC) UcDc = U_{Dc} – Gleichspannung, bei der das Überspannungsschutzgerät durchschlagen ist

Für DC-Überspannungsschutzgeräte

 $U_{c} = U_{Dc}$ – Gleichspannung, bei der das Überspannungsschutzgerät durchschlagen ist

Andere Parameter

SPD:... – identifizierter Typ des Überspannungsschutzgeräts

R_{Iso} U_n – maximale DC-Messspannung

Uc MIN – untere Grenze des Bereichs, in dem die Uc-Spannung enthalten sein sollte

Uc MAX - obere Grenze des Bereichs, in dem die Uc-Spannung enthalten sein sollte

 $\mathbf{U}_{C\,\text{MAX}}$ – maximaler Betriebsspannungswert, der auf dem Überspannungsschutzgerät angegeben ist

 $\mathbf{\hat{U}}_{C \text{ TOL}}$ – Toleranzbereich für die tatsächliche Durchbruchspannung des Überspannungsschutzgerätes Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde,

IM VORHERIGEN SPEICHERN – das Ergebnis in dem Ordner/Gerät speichern, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde.

5

5.9 SV – Messung mit schrittweise ansteigender Spannung

Die Messung der Schrittspannung (ang. *Step Voltage* – SV) soll zeigen, dass ein Objekt mit guten Widerstandseigenschaften unabhängig von der Messspannung seinen Widerstand nicht wesentlich ändern sollte. In diesem Modus führt das Prüfgerät eine Serie von 5 Messungen mit ansteigender Spannung durch. Die Spannung erhöht sich abhängig von der eingestellten Maximalspannung:

- 250 V: 50 V, 100 V, 150 V, 200 V, 250 V,
- 500 V: 100 V, 200 V, 300 V, 400 V, 500 V,
- 1 kV: 200 V, 400 V, 600 V, 800 V, 1000 V,
- 2,5 kV: 500 V, 1 kV, 1,5 kV, 2 kV, 2,5 kV,
- Benutzerdefiniert: Sie können eine beliebige maximale Spannung U_{MAX} eingeben, die in den Schritten mit dem Wert ¹/₅U_{MAX} erreicht wird. Besipielsweise **700 V:** 140 V, 280 V, 420 V, 560 V, 700 V.

Die verfügbaren Spannungen hängen von der Hardwareplattform ab.

- Maximale (End-) Messspannung U_n,
- gesamte Messzeit t.

Das Ergebnis für jede der 5 Messungen wird gespeichert, was durch eine "Beep-Ton" signalisiert.

- Wählen Sie die Messung SV.
 - Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie die Drähte gemäß Abschnitt 3.1.2.

Drücken Sie die **START**-Taste und halten Sie sie **5 Sekunden** lang gedrückt. Dadurch wird ein 5-Sekunden-Countdown **ausgelöst**, nach dem die Messung beginnt.

5 s

Sie können einen Schnellstart (ohne 5 Sekunden Verzögerung) durchführen, indem Sie die **START**-Taste bewegen.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

Während die Messung läuft, können Sie das Diagramm anzeigen (Abschnitt 9.1).

Lesen Sie nach der Messung das Ergebnis ab. Auch jetzt können Sie durch Berühren der Punkteleiste die Teilergebnisse der Messung anzeigen.

© 09:09		94%
\leftarrow Step voltage (SV)		A
Bestanden	১	•
Bestanden	~ (2)	^
R _{ISO SV1} = 9,018 GΩ		
R _{ISO SV2} = 8,908 GΩ		
R _{ISO SV3} = 8,943 GΩ	• SPEICHERN	

Sie können auch jetzt das Diagramm anzeigen (Abschnitt 9.1).

5

4

Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

- Abschalten von t₂ deaktiviert gleichzeitig t₃.
 - Die Timer-Messung wird erst dann gestartet, wenn sich die Spannung U_{ISO} stabilisiert hat.
- Meldung LIMIT I bedeutet, die Messung wird mit begrenzter Leistung durchgeführt. Dauert dieser Zustand länger als 20 Sekunden an, wird die Messung unterbrochen.
- Wenn das Messgerät nicht in der Lage ist, die Kapazität des Testobjekts aufzuladen, wird LIMIT I angezeigt und die Messung wird nach 20 s beendet.
- Ein kurzer Piepton markiert die 5-Sekunden-Intervalle. Wenn die Stoppuhr charakteristische Punkte (Zeiten t₁, t₂, t₃) erreicht, wird die Anzeige dieses Punktes 1 s lang angezeigt und ein langer Piepton ertönt.
- Liegt der Wert eines der gemessenen Wirkwiderstände außerhalb des Bereichs, wird der Wert des Absorptionskoeffizienten nicht angezeigt – es werden horizontale Striche angezeigt.
- Nach Beendigung der Messung, wird die Kapazität des Pr
 üflings durch Kurzschlie
 ßen von R_{Iso+} und R_{Iso}- über einen ca. 100 k
 Ω entladen. Die Meldung ENTLADEN und der U_{Iso}-Spannungswert, der dann am Objekt gehalten wird, werden angezeigt. U_{Iso} nimmt mit der Zeit ab, bis sie vollst
 ändig entladen ist.

5.10 U – Spannung

Mit dieser Funktion können Sie die Spannung am Prüfobjekt messen.

Um eine Messung vorzunehmen, müssen Sie einstellen (=: Kennzeichnungen der Leiter, zwischen denen die Spannung geprüft wird.

4

Drücken Sie die START-Taste, um das Speichern des Ergebnisses zu ermöglichen.

5

Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde,

6 Messungen. Sicherheit der elektrischen Betriebsmittel

6.1 Izange – Messen des Stromes mit der Zange

Der Zweck der Prüfung besteht darin, den Strom zu messen, den das getestete Gerät aus dem Netzwerk bezieht.

Um eine Messung vorzunehmen, müssen Sie einstellen (
⊒:):

- gesamte Messzeit t,
- ob die Messung kontinuierlich erfolgen soll oder nicht (∞ = ja der Test soll so lange dauern, bis die STOP-Taste gedrückt wird, ∞ = nein die Zeit t wird eingehalten),
- Grenze (falls erforderlich).

WARNUNG

Während der Messung ist die gleiche Netzspannung an der Prüfdose angelegt wie zur Versorgung des Prüfgerätes.

- Wählen Sie die Messung Izange.
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).
- 2 Schließen Sie die Zangen gemäß Abschnitt 3.2.1 an.
- 3

Drücken Sie die START-Taste.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste **g**edrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

4 Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

- t Messzeit
- 5 Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

2

6.2 I_{Δ} – Differentialleckstrom

Differentialstrom I_{Δ} ist die Differenz der Ströme, die nach Kirchhoffs 1. Gesetz in den Leitern L und N des Testobjekts fließen, wenn dieses in Betrieb ist. Die Messung ermöglicht die Bestimmung des gesamten Ableitstroms des Objekts, d. h. die Summe aller austretenden Ströme und nicht nur derjenigen, die durch den Schutzleiter fließen (bei Geräten der Klasse I). Die Messung wird als Ersatz für die Messung des Isolationswiderstandes durchgeführt.

Um eine Messung vorzunehmen, müssen Sie einstellen (
⊒:):

- ob die Messung kontinuierlich erfolgen soll oder nicht (∞ = ja der Test soll so lange dauern, bis die STOP-Taste gedrückt wird, ∞ = nein die Zeit t wird eingehalten),
- gesamte Messzeit t,
- Invertieren der Polarität (ja wenn die Messung f
 ür die Umpolung wiederholt werden soll, nein wenn die Messung nur f
 ür eine Polarit
 ät durchgef
 ührt wird),
- Messmethode,
- Grenze (falls erforderlich).

WARNUNG

- Während der Überprüfung eines fehlerhaften Prüflings, kann der RCD der Hausinstallation auslösen.

- Wählen Sie die Messung I_{Δ} .
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie das Messsystem je nach eingestellter Methode an:

- Messung an der Steckdose gemäß Abschnitt 3.2.4,
- Messung mit Zangen gemäß Abschnitt 3.2.2,
- PRCD-Messung gemäß Abschnitt 3.2.9.

2

Drücken Sie die START-Taste.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste **1** gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

4 Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

IM VORHERIGEN SPEICHERN – das Ergebnis in dem Ordner/Gerät speichern, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde.

5

- Beim Differenzstrom wird der Unterschied des Stromes zwischen L und N gemessen. Dies Messung bezieht nicht nur Ströme mit ein, welche über PE, sondern auch über andere Elemente wie Wasserrohre etc., abfließen. Der Nachteil dieser Messung ist der aufgenommene Strom zwischen L und N des Prüflings. In diesem Fall ist die Messung weniger genau als die Ableitstrommessung.
- Der Prüfling muss eingeschalten sein.
- Ist Polarität ändern auf Ja eingestellt, polt das Pr
 üfger
 ät automatisch nach Ablauf der eingestellten Pr
 üfdauer um und wiederholt die Messung. Als Pr
 üfergebnis wird der h
 öhere der gemessenen Differenzstr
 öme angezeigt.
- Das Ergebnis kann durch Feldeinflüsse und den Aufnahmestrom des Prüflings beeinflusst werden.
- Liegt eine Beschädigung am Prüfling vor und es wird das Auslösen der 16A Sicherung angezeigt, bedeutet dies, dass auch die Sicherung der Hausinstallation ausgelöst hat.

6.3 IL – Leckstrom im Schweißkreis

Strom IL ist der Leckstrom zwischen den Schweißzangen und dem Schutzleiteranschluss.

Um eine Messung vorzunehmen, müssen Sie einstellen (
⊒):

- gesamte Messzeit t,
- Invertieren der Polarität (ja wenn die Messung f
 ür die Umpolung wiederholt werden soll, nein wenn die Messung nur f
 ür eine Polarit
 ät durchgef
 ührt wird),
- Messmethode,
- Grenze (falls erforderlich).

1

- Wählen Sie die Messung IL.
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

2 Schließen Sie das Messsystem je nach eingestellter Methode an:
 Prüfung eines einphasigen Empfängers - Messung an de

- Pr
 üfung eines einphasigen Empf
 ängers Messung an der Steckdose gem
 äß Abschnitt 3.2.12.1,
 - Prüfung eines dreiphasigen Empfängers gemäß Abschnitt 3.2.12.5.

3

Drücken Sie die START-Taste.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste **g**edrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

4 Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

Sie können die Messergebnisse:

5

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

6.4 IP – Leckstrom im Versorgungskreis des Schweißgeräts

Dies ist der Leckstrom im Primärstromkreis (Stromkreis) des Schweißgeräts. Während der Prüfung ist es erforderlich, dass:

- die Schweißenergiequelle von der Erde isoliert ist,
- die Schweißstromquelle mit der Nennspannung versorgt wird,
- die Schweißenergiequelle nur über das Messsystem mit der Schutzerde verbunden ist,
- der Eingangsstromkreis sich im Leerlauf befindet,
- die Entstörkondensatoren abgeklemmt sind.

Um eine Messung vorzunehmen, müssen Sie einstellen (王):

- ob die Messung kontinuierlich erfolgen soll oder nicht (∞ = ja der Test soll so lange dauern, bis die STOP-Taste gedrückt wird, ∞ = nein die Zeit t wird eingehalten),
- gesamte Messzeit t,
- Învertieren der Polarität (ja wenn die Messung f
 ür die Umpolung wiederholt werden soll, nein wenn die Messung nur f
 ür eine Polarit
 ät durchgef
 ührt wird),
- Messmethode,
- Grenze (falls erforderlich).

- Wählen Sie die Messung IP.
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie das Messsystem je nach eingestellter Methode an:

- Messung an der Steckdose gemäß Abschnitt 3.2.12.2,
 - Prüfung eines einphasigen 230-V-Empfängers bei Netzversorgung gemäß Abschnitt 3.2.12.3,
 - Prüfung eines dreiphasigen Empfängers bei Netzversorgung gemäß Abschnitt 3.2.12.6.

2

Drücken Sie die START-Taste.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste **1** gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

4 Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

5

Sie können die Messergebnisse:

5

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

∧ → 🛃

6.5 IPE – Leckstrom im PE-Leiter

Strom I_{PE} ist der Strom, der durch den Schutzleiter fließt, wenn das Gerät in Betrieb ist. Er darf jedoch nicht mit dem gesamten Leckstrom gleichgesetzt werden, da es neben dem PE-Leiter noch andere Ableitwege geben kann. Daher sollte das zu prüfende Gerät während der Prüfung von der Erde isoliert sein.

Überprüfen sie vorab auf jeden Fall den Widerstandswert der R_{PE} Messung auf einen korrekten Wert.

Um eine Messung vorzunehmen, müssen Sie einstellen (王):

- ob die Messung kontinuierlich erfolgen soll oder nicht (∞ = ja der Test soll so lange dauern, bis die STOP-Taste gedrückt wird, ∞ = nein die Zeit t wird eingehalten),
- gesamte Messzeit t,
- Invertieren der Polarität (ja wenn die Messung f
 ür die Umpolung wiederholt werden soll, nein wenn die Messung nur f
 ür eine Polarit
 ät durchgef
 ührt wird),
- Messmethode,
- Grenze (falls erforderlich).

/

WARNUNG

- Während der Messung ist die gleiche Netzspannung an der Prüfdose angelegt wie zur Versorgung des Prüfgerätes.
- Während der Überprüfung eines fehlerhaften Prüflings, kann der RCD der Hausinstallation auslösen.

- Wählen Sie die Messung IPE.
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie das Messsystem je nach eingestellter Methode an:

- Messung an der Steckdose oder mit Zangen gemäß Abschnitt 3.2.3,
- PRCD-Messung gemäß Abschnitt 3.2.9.

2

Drücken Sie die START-Taste.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste **1** gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

4 Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

5

Sie können die Messergebnisse:

5

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

- Der PE Leckstrom wird direkt im PE Leiter gemessen, was einen sehr genauen Ergebniswert liefert, sogar wenn eine Stromaufnahme von 10 A oder 16 A stattfindet. Beachten Sie bitte, wenn der Strom nicht direkt über PE abfließt, sondern z.B. über Wasserrohre, kann dieser mit dieser Methode nicht gemessen werden. In diesem Fall muss die Differenzstrommessmethode I_D verwendet werden.
- Stellen Sie sicher, dass der Prüfling sich in isolierter Umgebung befindet.
- Ist Polarität ändern auf Ja eingestellt, polt das Pr
 üfger
 ät automatisch nach Ablauf der eingestellten Pr
 üfdauer um und wiederholt die Messung. Als Pr
 üfergebnis wird der h
 öhere der gemessenen Ableitstr
 ömen angezeigt.
- Liegt eine Beschädigung am Prüfling vor und es wird das Auslösen der 16A Sicherung angezeigt, bedeutet dies, dass auch die Sicherung der Hausinstallation ausgelöst hat.

6.6 Isub – Ersatzleckstrom

Ersatzleckstrom (alternativer Leckstrom) I_{SUB} ist der theoretische Strom. Das zu prüfende Gerät wird aus einer Quelle mit reduzierter Sicherheitsspannung gespeist, und wir skalieren den daraus resultierenden Strom nach oben und berechnen den Strom, der fließen würde, wenn es mit der Nennspannung gespeist würde (was diese Messung auch für den Messgerätbetreiber am sichersten macht). Die Messung des Ersatzstroms ist nicht für Geräte geeignet, die zum Einschalten die volle Versorgungsspannung benötigen.

- Bei SKI Geräten darf diese Messung nur bei einer positiven R_{PE} Messung durchgeführt werden.
- I_{SUB} wird bei einer Spannung von <50 V gemessen. Der Wert wird im Verhältnis der im Hauptmenü eingestellten Nennnetzspannung berechnet. Die Spannung wird zwischen L und N (kurzgeschlossen) gegen PE angelegt. Der Widerstand des Messkreises ist 2 kΩ.

Um eine Messung vorzunehmen, müssen Sie einstellen (Ξ_{\pm}^{\pm}) :

- gesamte Messzeit t.
- Messmethode.
- ob die Messung kontinuierlich erfolgen soll oder nicht ($\infty = \mathbf{ja} \text{der Test soll so lange dauern, bis$ die **STOP**-Taste gedrückt wird, $\infty = nein - die Zeit t wird eingehalten),$
- Grenze (falls erforderlich).

Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie das Messsystem abhängig von der Schutzart des geprüften Geräts an: 2

- SKI gemäß Abschnitt 3.2.4,
 - SKII gemäß Abschnitt 3.2.5.

1

Drücken Sie die START-Taste.

Der Test wird fortgesetzt, bis die programmierte Zeit erreicht ist oder die Taste 🔲 gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teil-4 ergebnisse angezeigt.

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

- - - 🛃

IM VORHERIGEN SPEICHERN – das Ergebnis in dem Ordner/Gerät speichern, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde.

5

- Prüfling muss eingeschalten sein.
- Prüfstromkreis ist elektrisch getrennt vom Netz und Netz-PE.
- Prüfspannung ist 25 V…50 V RMS.

6.7 I_T – Berührungsleckstrom

Berührungsleckstrom I_T ist der Strom, der von einem vom Versorgungsstromkreis isolierten Element zur Erde fließt, wenn dieses Element geerdet ist. Mit dieser Größe verknüpft ist der korrigierte Berührungsstrom verbunden. Dies ist der Berührungsstrom, der durch eine Sonde, die den menschlichen Widerstand simuliert, zur Erde fließt. Die IEC 60990 gibt einen menschlichen Widerstand von 2 k Ω an. Dies ist auch der Innenwiderstand der Sonde.

Um eine Messung vorzunehmen, müssen Sie einstellen (王):

- ob die Messung kontinuierlich erfolgen soll oder nicht (∞ = ja der Test soll so lange dauern, bis die STOP-Taste gedrückt wird, ∞ = nein die Zeit t wird eingehalten),
- gesamte Messzeit t,
- Invertieren der Polarität (ja wenn die Messung f
 ür die Umpolung wiederholt werden soll, nein wenn die Messung nur f
 ür eine Polarit
 ät durchgef
 ührt wird),
- Messmethode,
- Grenze (falls erforderlich).

WARNUNG

- Während der Überprüfung eines fehlerhaften Prüflings, kann der RCD der Hausinstallation auslösen.

- Wählen Sie die Messung IT.
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie das Messsystem je nach eingestellter Methode an:

- Messung mit einer Sonde gemäß Abschnitt 3.2.5,
- PRCD-Messung gemäß Abschnitt 3.2.9.
- 3

Drücken Sie die START-Taste.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste **1** gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

IM VORHERIGEN SPEICHERN – das Ergebnis in dem Ordner/Gerät speichern, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde.

5

- Ist **Polarität ändern** auf **Ja** eingestellt, polt das Prüfgerät automatisch nach Ablauf der eingestellten Prüfdauer um und wiederholt die Messung. Als Prüfergebnis wird der höhere der gemessenen Berührströme angezeigt.
- Wird der Prüfling nicht vom Prüfgerät versorgt, sollte die Messung in beiden Steckerpositionen durchgeführt werden und der höhere Berührstrom als Prüfergebnis verwendet werden. Wird der Prüfling durch den Tester versorgt, wird im Auto-test Modus L und N automatisch umgepolt.
- Die Berührstrommessung wird gemäß der Norm EN 60990 durchgeführt.

6.8 IEC – IEC Anschlussleitungstest

Beim IEC Anschlussleitungstest wird die Durchgängigkeit, Kurzschluss und auf richtigen Anschluss von L-L und N-N überprüft. Ebenso wird der PE Widerstand und der Isolationswiderstand gemessen.

Um eine Messung vorzunehmen, müssen Sie einstellen (글≟):

- Messzeit für Widerstand $R_{\text{PE}} t$,
- Messstrom In,
- R_{PE}-Grenzwert (maximaler Widerstand des PE-Leiters),
- Messzeit f
 ür Widerstand R_{ISO} t ,
- Messspannung U_n,
- R_{ISO}-Grenzwert (minimalną rezystancję izolacji),
- Invertieren der Polarität (ja wenn die Messung f
 ür die Umpolung wiederholt werden soll, nein wenn die Messung nur f
 ür eine Polarit
 ät durchgef
 ührt wird).
 - Die Auswahl des Polaritätsprüfmodus hängt davon ab, ob der Test an einem Standard-IEC-Kabel (LV-Methode) oder einem mit einem FI-Schutzschalter (HV-Methode) ausgestatteten Kabel durchgeführt wird.
 - Während des Polaritätstests im HV-Modus löst der FI-Schalter aus. Es muss innerhalb von 10 Sekunden eingeschaltet werden. Andernfalls behandelt das Messgerät dies als unterbrochenen Stromkreis und gibt ein negatives Messergebnis zurück.

- Wählen Sie die Messung IEC.
 - Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie das Messsystem je nach eingestellter Methode an:

- IEC-Messung (LV) gemäß Abschnitt 3.2.8,
- PRCD-Messung (HV) gemäß Abschnitt 3.2.9.

2

Drücken Sie die START-Taste.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste **g**edrückt wird.

~

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

4 Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

Informationen über Fehler der Anschlussleitung werden in den entsprechenden Feldern angezeigt.

5

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

6.9 PELV – PELV Test

Mit diesem Test werden die erzeugten Kleinstspannungen auf Ihre Grenzwerte überprüft.

Um eine Messung vorzunehmen, müssen Sie einstellen (
⊒):

- ob die Messung kontinuierlich erfolgen soll oder nicht (∞ = ja der Test soll so lange dauern, bis die STOP-Taste gedrückt wird, ∞ = nein die Zeit t wird eingehalten),
- gesamte Messzeit t,
- untere Grenze,
- obere Grenze.

- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).
- 2 Schließen Sie das Messsystem gemäß Abschnitt 3.2.10 an.

1

Drücken Sie die START-Taste.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste **1** gedrückt wird.

- Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.
- 4 Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

5

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

6.10 PRCD – Prüfen von PRCD Geräten (mit integriertem RCD)

Gemäß EN 50678 muss bei Geräten mit zusätzlichen Schutzvorrichtungen wie RCDs oder PRCDs ein Auslösetest des Leistungsschalters entsprechend seiner Spezifikationen und Eigenschaften durchgeführt werden. Detaillierte Informationen sind dem Gehäuse oder der technischen Dokumentation zu entnehmen. Zum Messvorgang gehört auch die Überprüfung der Polarität des Verlängerungskabels.

Um eine Messung vorzunehmen, müssen Sie einstellen (五):

- Form der Prüfstromwellenform,
- Art der Messung (Auslösestrom ${\sf I}_a$ oder Auslösezeit bei einem bestimmten Vielfachen des Bemessungsstroms $t_a),$
- Nennstrom RCD I_{Δn},
- Typ des gepr
 üften Leistungsschalters RCD.

WARNUNG

Während der Messung ist die gleiche Netzspannung an der Prüfdose angelegt wie zur Versorgung des Prüfgerätes.

3

- Wählen Sie die Messung PRCD.
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).
- 2 Schließen Sie das Prüfobjekt gemäß Abschnitt 3.2.9 an.

Drücken Sie die START-Taste.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste **o**gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

4 Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

∧ ►

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

6.11 RCD – Messen von festangeschlossenen RCDs

Gemäß EN 50678 muss bei Geräten mit zusätzlichen Schutzvorrichtungen wie RCDs oder PRCDs ein Auslösetest des Leistungsschalters entsprechend seiner Spezifikationen und Eigenschaften durchgeführt werden. Detaillierte Informationen sind dem Gehäuse oder der technischen Dokumentation zu entnehmen.

Um eine Messung vorzunehmen, müssen Sie einstellen (王):

- Form der Prüfstromwellenform,
- Art der Messung (Auslösestrom I_a oder Auslösezeit bei einem bestimmten Vielfachen des Bemessungsstroms t_a),
- Nennstrom RCD $I_{\Delta n}$,
- Typ des geprüften Leistungsschalters RCD.

Schließen Sie das Messsystem gemäß Abschnitt 3.2.11 an.

Drücken Sie die START-Taste.

Schalten Sie den RCD jedes Mal ein, wenn er auslöst.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

4 Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

5

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

6.12 Riso – Isolationswiderstand

Die Isolierung ist der primäre Schutz und bestimmt die sichere Verwendung des Geräts in Klasse I und Klasse II. Der Umfang dieser Inspektion muss auch das Stromversorgungskabel umfassen. Die Messung sollte bei 500 V DC durchgeführt werden. Bei Geräten mit eingebautem Überspannungsschutz, SELV/PELV-Geräten oder IT-Geräten wird die Prüfung mit einer auf 250 V DC reduzierten Spannung durchgeführt.

Überprüfen sie vorab auf jeden Fall den Widerstandswert der R_{PE} Messung auf einen korrekten Wert.

Um eine Messung vorzunehmen, müssen Sie einstellen (Ξ ::

- gesamte Messzeit t.
- Messspannung U_n ,
- Messmethode.
- ob die Messung kontinuierlich erfolgen soll oder nicht ($\infty = \mathbf{ja} \det \text{Test soll so lange dauern, bis}$ die **STOP**-Taste gedrückt wird, $\infty = nein - die Zeit t wird eingehalten),$
- Grenze (falls erforderlich). .

- Der Prüfling muss eingeschaltet sein.
- Prüfstromkreis ist elektrisch vom Netz und Netz-PE isoliert.
- Das Prüfergebnis sollte erst nach einem stabilisierten Wert abgelesen werden.
- Nach der Messung wird der Prüfling automatisch entladen.

- Wählen Sie die Messung R_{iso} . Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie das Messsystem je nach Prüfobjekt an:

- Gerät der Schutzklasse I Methode Dose gemäß Abschnitt 3.2.4.
- Gerät der Schutzklasse I Methode Sonde-Sonde gemäß Abschnitt 3.2.6, •
- Gerät der Schutzklasse II oder III Methode Dose-Sonde gemäß Abschnitt 3.2.5, •
- IEC-Kabel Methode IEC gemäß Abschnitt 3.2.8.

2

Drücken Sie die START-Taste.

Der Test wird fortgesetzt, bis die programmierte Zeit erreicht ist oder die Taste 🔲 gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

5

Sie können die Messergebnisse:

5

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

6.13 RISO LN-S, RISO PE-S – Isolationswiderstand an Schweißgeräten

Die Isolationswiderstandsprüfung des Schweißgeräts ist in mehrere Stufen unterteilt.

- Messung des Isolationswiderstands zwischen dem Stromversorgungskreis und dem Schweißkreis.
- Messung des Isolationswiderstands zwischen dem Stromversorgungskreis und dem Schutzkreis.
- Messung des Isolationswiderstands zwischen dem Schweißstromkreis und dem Schutzstromkreis.
- Messung des Isolationswiderstands zwischen dem Stromkreis und den freiliegenden leitenden Teilen (f
 ür Schutzklasse II).

Die Isolationswiderstandsmessung wird durchgeführt:

- Zwischen kurzgeschlossenen primären Leitern (L und N) und der sekundärseitigen Windung des Schweißgerätes (R_{ISO LN-S}),
- Zwischen PE Leiter und der Sekundärwindung des Schweißgerätes (RISO PE-S).

Bei SK I Geräten macht diese Messung nur Sinn, wenn zuvor:

- R_{PE} Messung OK war und
- Standard R_{ISO} Messung OK war.

Um eine Messung vorzunehmen, müssen Sie einstellen (王):

- gesamte Messzeit t,
- Messspannung U_n,
- ob die Messung kontinuierlich erfolgen soll oder nicht (∞ = ja der Test soll so lange dauern, bis die STOP-Taste gedrückt wird, ∞ = nein die Zeit t wird eingehalten),
- Grenze (falls erforderlich).

- Prüfling muss eingeschalten werden.
- Der Prüfkreis ist elektrisch isoliert vom Netz und Netz-PE.
- Die Prüfergebnisse sollten nur nach einem stabilisierten Wert abgelesen werden.

1

• Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie das Messsystem je nach Prüfobjekt an:

- Messen von RISO LN-S oder RISO PE-S. 1-phasiger Prüfling gemäß Abschnitt 3.2.12.1,
- Messen von R_{ISO LN-S} oder R_{ISO PE-S}. 3-phasiger Prüfling oder 1-phasiger Prüflingsversorgung durch eine Industriesteckdose – gemäß Abschnitt 3.2.12.4.

3

Drücken Sie die START-Taste.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste **g**edrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

5

Sie können die Messergebnisse:

5

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

> > 🛃

6.14 RPE – Widerstand des Schutzleiters

6.14.1 Autozero – Kalibrierung der Messleitungen

Um den Einfluss des Messleitungswiderstandes auf das Messergebnis zu eliminieren, muss eine Kompensation (Nullen) der Leitungen durchgeführt werden.

Wählen Sie Autozero.

2a

Um die Kabelwiderstandskompensation zu **aktivieren**, schließen Sie das Kabel an die **T2**-Buchse und an PE der **TEST**-Buchse an und drücken Sie **()**. Das Messgerät ermittelt den Widerstand der Messleitungen für einen Strom von 25 A und 200 mA. Im Rahmen der Messungen werden **Ergebnisse abzüglich** dieses Widerstands angezeigt und die Meldung **Autozero (On)** wird im Widerstandsmessfenster angezeigt.

2b Um die Kabelwiderstandskompensation zu **desaktivieren**, trennen Sie das Kabel von PE der **TEST**-Buchse an und drücken Sie **()**. Im Rahmen der Messungen werden unter anderem der **Widerstand der Messleitungen** und im Fenster der Widerstandsmessung wird **Autoze- ro** (Aus) angezeigt.

6.14.2 RPE – Widerstand des Schutzleiters

Eine Durchgangsprüfung – oder mit anderen Worten: eine Messung des Schutzleiterwiderstandes - wird durchgeführt, um zu überprüfen, ob die vorhandenen leitfähigen Bauteile richtig angeschlossen sind. Anders ausgedrückt: Es wird der Widerstand zwischen dem Schutzkontakt des Steckers (der Anschlussstelle - bei fest angeschlossenen Geräten) und den Metallteilen des Gerätegehäuses, die mit dem Schutzleiter verbunden sein sollten, gemessen. Diese Prüfung wird für Geräte der Schutzklasse I durchgeführt.

Es ist zu beachten, dass es auch Geräte der Klasse II gibt, die mit einem Schutzleiter ausgestattet sind. Das ist Funktionserdung. In den meisten Fällen ist es nicht möglich, die Durchgängigkeit zu überprüfen, ohne das Gerät zu zerlegen. In diesen Fällen werden nur Klasse-II-spezifische Prüfungen durchgeführt.

Um eine Messung vorzunehmen, müssen Sie einstellen (Ξ ::

- gesamte Messzeit t, .
- Messmethode, .
- prad znamionowy In badanego obiektu,
- ob die Messung kontinuierlich erfolgen soll oder nicht ($\infty = ja$ der Test soll so lange dauern, bis . die **STOP**-Taste gedrückt wird, $\infty = nein - die Zeit t wird eingehalten),$
- Grenze (falls erforderlich).

- Wählen Sie die Messung R_{PE}.
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie das Messsystem je nach eingestellter Methode an: 2

- Dose-Sonde oder Sonde-Sonde gemäß Abschnitt 3.2.7,
 - Messung der IEC-Leitung gemäß Abschnitt 3.2.8,
 - PRCD-Messung gemäß Abschnitt 3.2.9.

3

Drücken Sie die START-Taste.

Der Test wird fortgesetzt, bis die programmierte Zeit erreicht ist oder die Taste
 dedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

5

Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

▲ 🕞 🛃

6.15 U₀ – Leerlaufspannung an Schweißgeräten ohne Last

Wenn die Schweißmaschine mit der Nennspannung bei der Nennfrequenz versorgt wird, sollten die Spitzenwerte der von der Maschine erzeugten Leerlaufspannung U₀ bei allen möglichen Einstellungen der Maschine die auf dem Typenschild angegebenen Werte nicht überschreiten. Es wird zwischen der Messung von zwei Größen unterschieden: PEAK und RMS. Es ist zu prüfen, ob der Wert der Spitzenspannung die Bedingung ± 15 % des U_N-Wertes der Schweißanlage erfüllt und außerdem die in Tabelle 13 der IEC 60974-1_2018-11 angegebenen Werte nicht überschreitet.

Um eine Messung vorzunehmen, müssen Sie einstellen (
⊒):

- Spannung der Sekundärseite der Schweißmaschine Uo, abgelesen vom Typenschild,
- Spannungsart der Sekundärseite der Schweißmaschine,
- RMS-Grenzwert (wenn Sie Spannungstyp = AC ausgewählt haben),
- PEAK-Grenzwert (wenn Sie Spannungstyp = AC oder DC ausgewählt haben),
- Grenzwert-Nennspannung der Primärseite des Schweißgeräts nur, wenn Sie das Kriterium ±15% PEAK überprüfen möchten (das Fehlen des eingegebenen Werts deaktiviert die Steuerung).

 In den Felden PEAK-Limit und RMS-Limit wählen Sie die Grenzwerte aus. Die beiden Parameter verändern sich gleichzeitig, da sie durch das vorliegende Verhältnis miteinander verbunden sind:

limit PEAK = $\sqrt{2} \cdot limit RMS$

... wobei wenn die Spannung = DC, ist der RMS-Grenzwert deaktiviert.

- Kriterium ±15% PEAK ist verantwortlich für die Überprüfung, ob die gemessene Spannung U₀ innerhalb der von der Norm vorgegebenen Grenzen liegt.
 - Bei Spannung = AC, wird U₀(PEAK) geprüft.
 - Bei Spannung = DC, dann wird U₀(RMS) gepr
 üft.

- Wählen Sie die Messung U₀.
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie das Messsystem je nach Art der Stromversorgung der Schweißmaschine an:

- 1-Phasen-Schweißgerät gemäß Abschnitt 3.2.12.1,
- 3-Phasen-Schweißgerät gemäß Abschnitt 3.2.12.5.

3

Drücken Sie die START-Taste.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste **o**gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

Positives Prüfergebnis:

- <u>DC-Spannung</u>: U₀ ≤ limit PEAK
- AC-, DC-Spannung: U₀ ≤ limit RMS
- Optional: Kriterium ±15% PEAK für die AC-Spannung:

 $U_0 \le 115\%$ Limit PEAK

U₀ ≥ 85% Limit PEAK Optional: Kriterium ±15% PEAK für die DC-Spannung:

 $U_0 \le 115\%$ Limit RMS $U_0 \ge 85\%$ Limit RMS

Negatives Prüfergebnis: U₀ erfüllt mindestens eine der oben genannten Bedingungen nicht.

Sie können die Messergebnisse:

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN – in den Speicher schreiben,

ignorieren und zum Messmenü zurückkehren,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

6.16 Funktionsprüfung

Unabhängig von der Schutzklasse ist zum Abschluss des Prüfverfahrens – insbesondere nach einer Reparatur! (gemäß EN 50678) – eine Funktionsprüfung erforderlich. Dabei werden die folgenden Parameter gemessen:

- Leerlaufstrom,
- L-N-Spannung,
- PF-Faktor, cosφ, THD Strom, THD Spannung,
- Wert der Wirk-, Blind- und Scheinleistung.

Die Messwerte sollten mit den Typenschilddaten verglichen und anschließend das Prüfobjekt bewertet werden. Darüber hinaus muss das Betriebsverhalten während der Messung, d. h. wenn das Gerät in Betrieb ist, beurteilt werden. Ein erfahrener Bediener ist in der Lage, den Zustand des Kommutators (ob er blinkt), den Lagerverschleiß (Geräusche und Vibrationen) und andere Fehler zu erkennen.

Liegt eine Beschädigung am Prüfling vor und es wird das Auslösen der 16 A Sicherung angezeigt, bedeutet dies, dass auch die Sicherung der Hausinstallation ausgelöst hat.

WARNUNG

Während der Messung ist die gleiche Netzspannung an der Prüfdose angelegt wie zur Versorgung des Prüfgerätes.

Um eine Messung vorzunehmen, müssen Sie einstellen (王):

- ob die Messung kontinuierlich erfolgen soll oder nicht (∞ = ja der Test soll so lange dauern, bis die STOP-Taste gedrückt wird, ∞ = nein – die Zeit t wird eingehalten),
- gesamte Messzeit t,
- Messmethode.

- Wählen Sie die Funktionsprüfung.
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie das Messsystem gemäß Abschnitt 3.2.13 an.

Drücken Sie die START-Taste.

Der Test wird fortgesetzt, **bis die programmierte Zeit** erreicht ist oder die Taste **D** gedrückt wird.

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

5

6

Vergleiche Sie das Messergebnis mit dem Datenblatt des Prüflings. Die Beurteilung auf Richtigkeit der Messergebnisse kann durch die Auswahl der entsprechenden Felder ' **OK positives Prüfergebnis**' oder '**F negatives Prüfergebnis**' durchgeführt werden. Werden die Ergebnisse im Speicher abgespeichert, so werden auch diese Beurteilungen den zugeordneten Messergebnissen hinterlegt.

Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde.

7 Messungen. Fotovoltaik

7.1 Diodentest

Mit diesem Test können Sie Folgendes überprüfen:

- ob die Diode der Spannung in Durchlassrichtung (F) ordnungsgemäß standhält,
- ob die Sperrdiode der Spannung in Sperrrichtung (R) ordnungsgemäß standhält.

WARNUNG

Beim Messen von Parametern in Sperrrichtung erzeugt das Messgerät eine gefährliche Messspannung.

†**↓**

Wählen Sie Diodentest.

Prüfmodus auswählen:

- F Prüfung in Durchlassrichtung,
- R Prüfung in Sperrrichtung,
 - **F**, **R** Prüfung in Durchlass- und Sperrrichtung.
- 3 E Geben Sie für die R bzw. F, R Prüfung die Prüfspannung Un an.

4 Schließen Sie die Drähte gemäß Abschnitt 3.3.1 oder Abschnitt 3.3.2.

Drücken Sie die START-Taste.

Wenn die gemessene Diode in Ordnung ist, werden die gemessenen Diodenparameter angezeigt. Andernfalls werden Symbole angezeigt, die über eine Beschädigung (Kurzschluss oder Öffnung) informieren.

- U_{ISO} Messspannung in Sperrrichtung
- U_F Diodenspannung in Durchlassrichtung
- U_R Diodenspannung in Sperrrichtung
- I_F Diodenstrom in Durchlassrichtung
- I_R Diodenstrom in Sperrrichtung

Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

IM VORHERIGEN SPEICHERN – das Ergebnis in dem Ordner/Gerät speichern, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde.

7

Während der Messung der Parameter wird die Korrektheit des Anschlusses der Diode an das Messgerät überprüft. Im Rahmen der Messungen wird bei einem umgekehrten Anschluss eine Information über diese Tatsache angezeigt (neben den Sondensymbolen wird eine Information über die Polarität der an die entsprechende Spitze der gemessenen Diode angeschlossenen Sonde angezeigt).

7.2 I-U – I-U-Kurve

Das Gerät misst Strom und Spannung der PV-Anlage abhängig von der simulierten Last, ermittelt also deren Effizienz. Die Ergebnisse werden in Form einer I-U-Kurve dargestellt. Auf dieser Grundlage kann festgestellt werden, ob bzw. wie stark sich die Leistung im Vergleich zu den Nennparametern des Systems verschlechtert hat.

Um eine Messung vorzunehmen, müssen Sie zuvor einstellen (
∰):

- Installationslayout (hier müssen Sie die Anzahl der parallel und in Reihe geschalteten PV-Module eingeben),
- Typ des Photovoltaikmoduls (Auswahl aus der PV-Moduldatenbank gemäß Abschnitt 10.1. Wenn Sie nichts auswählen, wird das Messergebnis nicht ausgewertet),
- Information, ob die Anlage neu ist,
- Alter der Anlage, wenn diese nicht neu ist.
 - Wählen Sie die Messung I-U-Kurve.
 - Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie die Drähte gemäß Abschnitt 3.3.4.

Liegen die gemessenen Anlagenparameter unterhalb der Grenzwerte, ist der Hintergrund des Feldes mit den aktuellen Messwerten orange. Eine Messung ist jedoch weiterhin möglich.

Drücken Sie die START-Taste.

- Über die Listen in der oberen Leiste können Sie anzeigen zu präsentierenden Datensatz.
- Durch Antippen können Sie das Diagramm vergrößern.

 $I_{sc} - DC$ -Kurzschlussstrom

Isc stc – DC-Kurzschlussstrom nach der Umrechnung auf STC-Bedingungen

Uoc – DC-Spannung des offenen Kreises

Uoc stc - DC-Spannung des offenen Kreises nach der Umrechnung auf STC-Bedingungen

P_{MAX} – maximale Leistung

 $\mathbf{P}_{\text{MAX STC}}$ – maximale Leistung, umgerechnet auf STC-Bedingungen

IMPP – Strom am Punkt maximaler Leistung

U_{MPP} – Spannung am Punkt maximaler Leistung

Zusätzlich zu den Parametern, die sich direkt auf die Kennlinie beziehen, werden auch zusätzliche Parameter bereitgestellt.

FF (Fill Factor) – Füllfaktor ausgedrückt als:

$$\mathsf{FF} = \frac{\mathsf{I}_{\mathsf{MPP}} \cdot \mathsf{U}_{\mathsf{MPP}}}{\mathsf{I}_{\mathsf{SC}} \cdot \mathsf{U}_{\mathsf{OC}}}$$

• PF (Power Factor) [%] – Leistungsfaktor ausgedrückt als:

$$PF = \frac{P_{MAXSTC} \text{ berechnet}}{P_{MAXSTC} \text{ aus Spezifikationen}} \cdot 100\%$$

• AF (Age Factor) – Alterungsfaktor ausgedrückt als:

$$AF = \frac{P_{MAXSTC} \text{ berechnet}}{P_{MAXSTC} \text{ aus Spezifikationen}(1 - \frac{\% \text{ Verschlechterung pro Jahr}}{100} \cdot \text{ Alter der Anlage})} \cdot 100$$

- ΔE [%] Einstrahlungsfehler, d. h. der vom Referenz-IRM-1 gemessene Einstrahlungsunterschied vor und nach der Messung der I-U-Kennlinie (Unterschied nicht größer als 2%)
- ΔT [°C oder °F] vom Referenz-IRM-1 gemessene Temperaturdifferenz vor und nach der Messung der I-U-Kennlinie (Unterschied nicht größer als 1°C oder 1,8°F)
- ΔEs [%] Unterschied in der Sonneneinstrahlung, gemessen vom Referenz-IRM-1 und dem Hilfs-IRM-1 bei der Messung der I-U-Kennlinie
- R_{SER} [Ω] Serienwiderstand der Module
- $R_{PAR} [\Omega] Parallelwiderstand der Module$

5

Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

7.3 Izange – Zangenstrommessung

Das Gerät misst den Betriebsstrom einer PV-Anlage. Die Prüfung kann als Alternative zur Messung des I_{SC} -Kurzschlussstroms verwendet werden, wenn diese letzte Prüfung aus irgendeinem Grund nicht durchgeführt werden kann. Mit der Prüfung können Sie auch den Stromverbrauch von AC/DC-Elektrogeräten überprüfen.

Drücken Sie die START-Taste, um das Speichern des Ergebnisses zu ermöglichen.

5

Δ

Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

7.4 Isc – DC-Kurzschlussstrom

ISC ist der Strom, der von der PV-Anlage erzeugt wird, wenn die DC-Seite kurzgeschlossen ist.

Um eine Messung vorzunehmen, müssen Sie zuvor einstellen (王):

- Installationslayout (hier müssen Sie die Anzahl der parallel und in Reihe geschalteten PV-Module eingeben),
- Typ des Photovoltaikmoduls (Auswahl aus der Datenbank gemäß Abschnitt 10.1. Sie können die Messung auch ohne Auswahl des Moduls aus der Datenbank durchführen, das Messergebnis wird dann aber nicht ausgewertet),
- die Isc TOL-TOleranz, innerhalb derer der Isc-Strom liegen sollte (ausgedrückt in %).

HINWEIS!

Während der Messung wird die Photovoltaikanlage für kurze Zeit kurzgeschlossen. Die Messleitungen dürfen während der Messung nicht abgeklemmt werden – es besteht die Gefahr der Lichtbogenzündung und der Beschädigung des Messgerätes.

- Wählen Sie die Messung Isc.
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).
- 2 Schließen Sie die Drähte gemäß Abschnitt 3.3.4. Das Messgerät ist bereit für die Messung, wenn es eine Spannung $U_{Dc} \ge 10$ V auf dem Objekt erkennt.

Drücken Sie die START-Taste.

4 Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

Isc – gemessener Kurzschlussstrom des Stromkreises

 $I_{SC STC}$ – gemessener I_{SC} -Strom, umgerechnet auf STC-Bedingungen

- E₁ Sonneneinstrahlung des geprüften Objekts Nr. 1
- E₂ Sonneneinstrahlung des geprüften Objekts Nr. 2
- T_{PV1} Temperatur des geprüften Objekts Nr. 1
- T_{PV2} Temperatur des geprüften Objekts Nr. 2

5

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

IM VORHERIGEN SPEICHERN – das Ergebnis in dem Ordner/Gerät speichern, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde.

Das Ergebnis wird nicht ausgewertet, wenn:

- es nicht auf STC-Bedingungen umgerechnet wurde,
- die Messung ohne Auswahl des Typs des Photovoltaikmoduls durchgeführt wurde.

7.5 P – Leistungsmessung

Die Messung es ermöglicht, den Verbrauch bzw. die Erzeugung von Wirkleistung elektrischer Geräte zu ermitteln. Gilt für AC- und DC-Geräte.

7.6 R_{ISO} – Isolationswiderstand

Das Gerät misst den Isolationswiderstand, indem es eine Messspannung U_n an den zu prüfenden Widerstand R anlegt und den durch ihn fließenden Strom I misst. Bei der Berechnung des Wertes des Isolationswiderstandes bedient sich das Messgerät der technischen Methode der Widerstandsmessung (R = U/I).

Um eine Messung vorzunehmen, müssen Sie zuvor einstellen (글):

- Messspannung U_n,
- Grenzen (falls erforderlich).

Das Messgerät wird mögliche Einstellungen vorschlagen.

WARNUNG

Das gemessene Objekt darf nicht unter Spannung stehen.

- Wählen Sie die Messung R_{Iso}.
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

Schließen Sie die Drähte gemäß Abschnitt 3.3.6.

3

2

1

Drücken Sie die **START**-Taste und halten Sie sie **5 Sekunden** lang gedrückt. Dadurch wird ein Countdown ausgelöst, während dessen das Messgerät keine gefährliche Spannung erzeugt und die Messung gestoppt werden kann, ohne testende Objekt zu entladen. Sobald der Countdown abgelaufen ist, wird die Messung **gestartet**.

5 s

Sie können einen Schnellstart (ohne 5 Sekunden Verzögerung) durchführen, indem Sie die **START**-Taste bewegen.

Der Test wird fortgesetzt, bis die Taste 🚺 gedrückt wird.

Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

4 Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

5

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

- Die Timer-Messung wird erst dann gestartet, wenn sich die Spannung UISO stabilisiert hat.
- Meldung LIMIT I bedeutet, die Messung wird mit begrenzter Leistung durchgeführt. Dauert dieser Zustand länger als 20 Sekunden an, wird die Messung unterbrochen.
- Wenn das Messgerät nicht in der Lage ist, die Kapazität des Testobjekts aufzuladen, wird LIMIT I angezeigt und die Messung wird nach 20 s beendet.
- Nach Beendigung der Messung, wird die Kapazität des Pr
 üflings durch Kurzschlie
 ßen von + und entladen. Die Meldung ENTLADEN und der U_{ISO}-Spannungswert, der dann am Objekt gehalten wird, werden angezeigt. U_{ISO} nimmt mit der Zeit ab, bis sie vollständig entladen ist.

7.7 RISO PV – Isolationswiderstand in PV-Anlagen

WARNUNG

- Schränken Sie vor der Prüfung des Objekts den Zugang für Unbefugte ein.
- Berühren Sie während der Messung keine Metallteile der Fotovoltaikanlage und die Rückseite der Module.
- Während der Messung des Isolationswiderstandes liegt an den Enden der Messleitungen des Messgerätes eine gefährliche Spannung an.
- Es ist verboten, die Messleitungen abzutrennen vor Abschluss der Messung zu ändern. Die Nichtbeachtung der obigen Anweisung führt zu einem elektrischen Hochspannungsschlag und macht es unmöglich, das geprüfte Objekt zu entladen.

Das Gerät misst den Isolationswiderstand, indem es eine Messspannung U_n an den zu prüfenden Widerstand R anlegt und den durch ihn fließenden Strom I misst. Bei der Berechnung des Wertes des Isolationswiderstandes bedient sich das Messgerät der technischen Methode der Widerstandsmessung (R = U/I).

Für Systeme mit einer Parallelschaltung besteht die Möglichkeit, den Erdschlussindikator GFI (Eng. *Ground Fault Indicator*) zu erhalten. Er zeigt an, zwischen welchen PV-Modulen Erdschluss auftritt. Die Funktion wird aktiviert, wenn der Isolationswiderstand bei gegebener Messspannung unter den Normwert fällt.

Beispiel: Eine Messspannung U_n =500 V wird an ein System aus n in Reihe geschalteten Modulen (z. B. 10) angelegt und der R_{ISO}-Wert liegt unter dem erforderlichen 1 M Ω .

- Wenn GFI 0 ist, liegt ein Erdschluss zwischen der "+"-Klemme der Anlage und dem Modul Nr. 1 vor.
- Wenn GFI im Bereich 1...n-1 liegt (z. B. 3), kann es zu einem Erdschluss zwischen dem angegebenen Modul und dem nächsten (hier: zwischen Modul Nr. 3 und 4) kommen.
- Wenn GFI n (z. B. 10) ist, liegt ein Erdschluss zwischen der "-"-Klemme der Anlage und dem letzten Modul vor.

Die GFI-Funktion verfügt über zwei Modi.

- Genauer Modus aktiv, wenn R_{ISO} ∈ <0; 100> kΩ. Es besteht eine sehr hohe Wahrscheinlichkeit eines Erdschlusses zwischen den vom Messgerät angezeigten Modulen. Anzeige: GFI =.
- Richtmodus aktiv, wenn R_{iSO} ∈ (100; 1000) kΩ. Es besteht eine gewisse Wahrscheinlichkeit eines Erdschlusses zwischen den vom Messgerät angezeigten Modulen. Anzeige: GFI ≈.

- Installationslayout (hier müssen Sie die Anzahl der parallel und in Reihe geschalteten PV-Module eingeben),
- Messspannung U_n,
- Grenze (falls erforderlich).

- Wählen Sie die Messung R_{Iso} PV.
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).

2 Schließen Sie die Leiter je nach Art der zu prüfenden Anlage nach dem entsprechenden Schema an (Abschnitt 3.3.7). Das Messgerät ist bereit für die Messung, wenn es eine Spannung $U_{Dc} \ge 10$ V auf dem Objekt erkennt.

Drücken Sie die START-Taste.

U_{ISO} – Messspannung GFI – Erdschlussanzeige

5 Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

▲ → 🛃

IM VORHERIGEN SPEICHERN – das Ergebnis in dem Ordner/Gerät speichern, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde.

Das Messgerät gibt ein kontinuierliches Tonsignal aus, bis die Prüfspannung 90% des voreingestellten Wertes erreicht (und auch, wenn 110% des voreingestellten Wertes überschritten werden).

7.8 Uoc – DC-spannung des offenen Stromkreises

U_{OC} ist die Spannung, die von der PV-Anlage erzeugt wird, wenn die DC-Seite unterbrochen ist.

Um eine Messung vorzunehmen, müssen Sie zuvor einstellen (Ξ ::

- Typ des Photovoltaikmoduls (Auswahl aus der Datenbank gemäß Abschnitt 10.1. Sie können die Messung auch ohne Auswahl des Moduls aus der Datenbank durchführen, das Messergebnis wird dann aber nicht ausgewertet),
- die Uoc ToL-Toleranz, innerhalb derer die Uoc-Spannung liegen sollte,
- Installationslayout (hier müssen Sie die Anzahl der parallel und in Reihe geschalteten PV-Module eingeben).
 - 1
- Wählen Sie die Messung Uoc.
- Geben Sie die Messeinstellungen ein (Abschnitt 2.3).
- 2 Schließen Sie die Drähte gemäß Abschnitt 3.3.4.

3 Aktuelle Messwerte werden auf dem Bildschirm angezeigt. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

© 13:32 🖆 27.8.2024 😫 admin		Щ. Ш
← U _{oc}		A
🔗 Bestanden	5	•
Bestanden Bestanden JAM60S20 380/MR	0	^
U _{oc} = 381,7 V		
U _{oc stc} = 391,7 V	SPEICHERN	^

Uoc – gemessene Spannung des offenen Kreises

 $U_{\text{OC} \text{ stc}}$ – gemessene U_{OC} -Spannung, umgerechnet auf STC-Bedingungen

E1 – Sonneneinstrahlung des geprüften Objekts Nr. 1

- E2 Sonneneinstrahlung des geprüften Objekts Nr. 2
- T_{PV1} Temperatur des geprüften Objekts Nr. 1
- TPv2 Temperatur des geprüften Objekts Nr. 2

Drücken Sie die START-Taste, um das Speichern des Ergebnisses zu ermöglichen.

5

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

IM VORHERIGEN SPEICHERN – das Ergebnis in dem Ordner/Gerät speichern, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde.

Das Ergebnis wird nicht ausgewertet, wenn:

- es nicht auf STC-Bedingungen umgerechnet wurde,
- die Messung ohne Auswahl des Typs des Photovoltaikmoduls durchgeführt wurde.
8 Automatische Messungen

8.1 Automatische Messungen

In diesem Modus können mehrere Messungen hintereinander durchgeführt werden, ohne vorher zurück ins Hauptmenü zu gehen.

1	=,	Gehen Sie zum Abschnitt Verfahren.	
2	ſ	 Wählen Sie das entsprechende Verfahren aus der Liste aus. Dabei kann Ihnen die Suchmaschine weiterhelfen. Durch Berühren des Etiketts mit dem Namen werden dessen Eigenschaften aufgerufen. 	
3	>	Gehen Sie zum Verfahren. Hier können Sie:	
		 festlegen, wie das Verfahren durchgeführt werden soll. Vollautomatisch (√ Auto) – alle aufeinanderfolgenden Messungen werden ohne vorherige Bestätigung durch den Benutzer gestartet (vorausgesetzt, das vorherige Prüfergebnis ist OK (positiv), Halbautomatisch (Auto) – nach Abschluss jeder Prüfung, wird der Ablauf angehalten und auf die Freigabe des Startes der nächsten Messung gewartet. Die nächste Messung kann durch die Taste START gestartet werden, die Funktion Multibox aktivieren oder deaktivieren. Siehe auch Abschnitt 8.3, die Einstellungen der Phasen (Teilmessungen) des Verfahrens ändern. Siehe auch Abschnitt 2.3, 	
		die Eigenschaften des Verfahrens aufrufen,	
		das Verfahren wie in Abschnitt 8.2 bearbeiten, d.h.:	
		王 Einstellungen der Schritte ändern,	
		▼▲ die Reihenfolge der Schritte ändern,	
		Schritte entfernen,	
		+ weitere Schnitte hinzufügen,	
		das Verfahren speichern.	

4

Drücken Sie die START-Taste.

Wenn die Funktion **Multibox** eingeschaltet ist, führen Sie für jeden Messwert die gewünschte Anzahl Messungen durch. Fahren Sie dann mit der Messung der nächsten Größe fort.

Die Prüfung wird fortgesetzt, **bis alle Messungen abgeschlossen sind** oder Sie drücken.

×

Durch Berühren des Ergebnisbalkens werden Teilergebnisse angezeigt.

5 Lesen Sie nach der Messung das Ergebnis ab. Durch Berühren der Ergebnisleiste werden Teilergebnisse angezeigt.

© 10:50 🛱 24.5.2024 😫	L NU _{L-N} = 235,6 V U _{N-PE} = 119,4 V f = 50,0	Hz 🖸
$\leftarrow \begin{array}{c} \text{CL II 500 V, IT} \\ _{202} \end{array}$		A
🛇 Bestanden		0
Sichtprüfung R _{ISO}	Ιτ	
⊘ Bestanden		
⊘ Alle	SPEICHERN	~
Stecker		

Sie können die Messergebnisse:

6

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN – einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

IM VORHERIGEN SPEICHERN – das Ergebnis in dem Ordner/Gerät speichern, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde.

8.2 Messverfahren erstellen

8.3 Multibox Funktion

Die Multibox Funktion ist standardmäßig deaktiviert (Multibox). Es kann für Benutzerverfahren mit dem Programm **Sonel PAT Analysis** dauerhaft aktiviert werden.

Das Aktivieren dieser Funktion ($\sqrt{Multibox}$) ermöglicht dem Benutzer mehrere Messungen eines Parameters durchzuführen – außer der Leistung. Diese ist dann besonders wichtig, wenn mehrere Messungen an verschiedenen Messpunkten benötigt werden.

- Jede Messung desselben Parameters wird als separat behandelt.
- Mit dem Symbol 🛃 wird eine weitere Messung des gleichen Parameters gestartet.
- Über das Symbol >gelangen Sie zur nächsten Messung.
- Alle Ergebnisse werden im Speicher gespeichert.

Der Messvorgang ist identisch zu den manuell durchgeführten Prüfungen.

Die Funktion wird von Photovoltaikverfahren nicht unterstützt.

8.4 Leitlinien

8.4.1 Fotovoltaik (DC)

WARNUNG

- Schränken Sie vor der Prüfung des Objekts den Zugang für Unbefugte ein.
- Berühren Sie während der Messung keine Metallteile der Fotovoltaikanlage und die Rückseite der Module.
- Während der Messung des Isolationswiderstandes liegt an den Enden der Messleitungen des Messgerätes eine gefährliche Spannung an.
- Es ist verboten, die Messleitungen abzutrennen vor Abschluss der Messung zu ändern. Die Nichtbeachtung der obigen Anweisung führt zu einem elektrischen Hochspannungsschlag und macht es unmöglich, das geprüfte Objekt zu entladen.

HINWEIS!

Während der Messung wird die Photovoltaikanlage für kurze Zeit kurzgeschlossen. Die Messleitungen dürfen während der Messung nicht abgeklemmt werden – es besteht die Gefahr der Lichtbogenzündung und der Beschädigung des Messgerätes.

- Das Messgerät gibt ein kontinuierliches Tonsignal aus, bis die Prüfspannung 90% des voreingestellten Wertes erreicht (und auch, wenn 110% des voreingestellten Wertes überschritten werden).
- Während der Messung gibt das Messgerät alle fünf Sekunden einen Signalton ab das erleichtert die Erfassung der Zeitparameter.
- Nach Abschluss der Messung wird die Kapazität des Messobjekts durch Kurzschließen der Klemmen "+" und "-" entladen.

9 Besondere Funktionen

9.1 R_{ISO}-Diagramme

la

Wenn eine $R_{\rm iso}$ -Messung läuft, können Sie ein Diagramm anzeigen. Über die Listen in der oberen Leiste können Sie anzeigen:

- Diagramm für das gewünschte Drahtpaar,

Sie können das Diagramm auch aufrufen, nachdem die Messung abgeschlossen ist.

Beschreibung der Funktionssymbole

+/-L1/L2 des Benutzers

Bezeichnung des zu messenden Drahtpaares. Wenn eine Messung läuft, ist nur das aktuell gemessene Paar verfügbar

Horizontales Scrollen des Diagramms

Zwei Finger auseinander schieben Zwei Finger einziehen

Horizontale / vertikale Ausdehnung des Diagramms

Einpassen des gesamten Diagramms auf den Bildschirm

Horizontale / vertikale Verengung des Diagramms Horizontales Scrollen des Diagramms

Zurück zum Messbildschirm

L

9.2 Korrektur des Ergebnisses RISO auf die Referenztemperatur

Das Messgerät kann den Wert von R_{ISO} in den Widerstand bei der Referenztemperatur nach der Norm ANSI/NETA ATS-2009 umrechnen. Um solche Ergebnisse zu erzielen, muss man:

- die Temperatur manuell eingeben oder
- die Temperatursonde an das Messgerät anschließen.

Die folgenden Optionen sind verfügbar: Es stehen folgende Optionen zur Verfügung:

- R_{ISO} umgerechnet bei 20°C f
 ür die Ölisolierung (gilt z.B. f
 ür die Kabelisolierung),
- R_{ISO} umgerechnet bei 20°C für die Festisolierung (gilt z.B. für die Kabelisolierung),
- R_{ISO} umgerechnet bei 40°C f
 ür die Ölisolierung (gilt z.B. f
 ür umlaufende Maschinen),
- R_{ISO} umgerechnet bei 40°C für die Festisolierung (gilt z.B. für die umlaufende Maschinen).

9.2.1 Korrektur ohne Temperatursonde

Messung durchführen.

3 📒

Gehen Sie zu diesem Ergebnis im Speicher des Messgeräts.

4 Geben Sie die Temperatur des zu testenden Objekts und die Art der Isolierung ein. Das Messgerät wandelt dann den gemessenen Widerstand in einen Widerstand bei der Referenztemperatur um: 20°C (R_{ISO k20}) und 40°C (R_{ISO k40}).

Um einen Temperaturmesswert zu erhalten, können Sie auch eine Temperatursonde an das Messgerät anschließen und den von ihr kommenden Messwert eingeben. Siehe Abschnitt 9.2.2, Schritt 1.

9.2.2 Korrektur mit Temperatursonde

1

WARNUNG

Um die Sicherheit des Benutzers zu gewährleisten, ist es nicht zulässig, die Temperatursonde an die Anlagen zu montieren, die unter einer höheren Spannung gegen Erde als 50 V sind. Es wird empfohlen, die untersuchte Anlage vor der Befestigung der Sonde zu erden.

Schließen Sie die Temperatursonde an das Messgerät an. Die vom Gerät gemessene Temperatur wird oben auf dem Bildschirm angezeigt.

Messung durchführen.

Das Ergebnis speichern.

Gehen Sie zu diesem Ergebnis im Speicher des Messgeräts.

Geben Sie die Art der Isolierung des Testobjekts ein. Die Temperatur, bei der die Messung durchgeführt wurde, ist bereits gespeichert und kann nicht geändert werden. Das Messgerät wandelt den gemessenen Widerstand in einen Widerstand bei der Referenztemperatur um: 20°C (R_{ISO k20}) und 40°C (R_{ISO k40}).

	🕓 10:54+01:00 UTC 🗎 3	.3.2023 🔮 Admin		₿ 23,8 °C 👍	
	× Temperatu	× Temperaturkoeffizient			
	т		Art der Isolie	rung	
	24,4	°C	- fest	~	
	ORiso = 9,915 Riso k20 = 12,4GΩ	GΩ RISO k40=5GΩ		T = 24,4°C	

5

Sie ändern die Einheit der Temperatur gemäß Abschnitt 1.5.5.

9.3 Korrektur der Ergebnisse auf STC-Bedingungen

Diese Funktion dient zur Umrechnung der Messergebnisse auf STC-Bedingungen (*Standard Test Conditions* – Bezugsbedingungen, für die der Hersteller alle PV-Modulparameter angibt). Hierzu benötigen Sie Messwerte von mindestens einem IRM-1-Messgerät. Die Umrechnung erfolgt nur, wenn die von IRM-1 angegebene Einstrahlung mindestens 100 W/m² beträgt.

Um die Kommunikation mit IRM-1 zu ermöglichen, muss ein Kommunikationsadapter an die Buchse 🔝 📕 im Master-Messgerät angeschlossen werden.

9.3.1 Verbindung zwischen IRM-1 und dem Messgerät

Wenn die IRM-1 Messgeräte mit dem Gerät gepaart wurden, sucht das Gerät beim Einschalten nach ihnen. Wenn das IRM-1 gefunden wird, wird eine Verbindung hergestellt und auf dem Bildschirm wird

angezeigt. Das Gerät merkt sich die letzten 2 gepaarten IRM-1s.

Unter jedem Listenelement können die folgenden Symbole erscheinen.

🔆 – IRM-1 nicht mit dem Messgerät gekoppelt.

IRM-1 mit dem Messgerät gekoppelt.

★ – IRM-1-Referenz (Master).

9.3.2 Kopplung der Messgeräte

Wenn die Kopplung mit dem IRM-1 noch nicht erfolgt ist, sollte sie wie unten beschrieben durchgeführt werden.

PAIr Schalten Sie das IRM-1-Messgerät ein, das gekoppelt werden soll. Schalten Sie es in den Pairing-Modus.

Gehen Sie zu **Einstellungen ► Zubehör ► IRM**. Eine Liste der erkannten IRM-1-Messgeräte wird angezeigt.

Geben Sie die Einstellungen des gewünschten IRM-1 ein und wählen Sie Link. Wenn das ausgewählte IRM-1 als erstes gekoppelt wird, erscheint oben auf dem Messgerätebildschirm das Symbol

9.3.3 Entkoppeln

Gehen Sie zu **Einstellungen ► Zubehör ► IRM**. Eine Liste der erkannten IRM-1-Messgeräte wird angezeigt.

Geben Sie die Einstellungen des gewünschten IRM-1 ein und wählen Sie **Unlink**. Wenn das ausgewählte IRM-1 als letztes entkoppelt wird, verschwindet oben vom Messgerätebildschirm das Symbol 🙀.

9.3.4 Korrektur der IRM-Anzeigen

Wenn die IRM-1-Messgeräte unterschiedliche Messwerte aufweisen, sollte ihre Korrektur anhand der Messwerte des Referenz-(Master-)IRM-1 vorgenommen werden. Die Korrektur muss für beide Messgeräte am gleichen Messpunkt durchgeführt werden. Beide müssen in der gleichen Richtung und im gleichen Winkel montiert werden (z. B. übereinander auf demselben PV-Modul).

Koppeln Sie Temperatur- und Sonnenlichtmessgeräte mit dem Gerät.

Wählen Sie IRM-1-Anpassung.

JSind die E_1 - und E_2 -Werte unterschiedlich, korrigieren Sie die Angaben, indem Sie **START** drücken. Nach Abschluss des Vorgangs erscheint eine Meldung, die Sie darüber informiert, dass die Korrektur aktiviert wurde.

In der Funktion **Umgebungsmessungen** können Sie auch Temperatur- und Sonnenlichtwerte vergleichen.

Die Korrektur funktioniert, bis das PVM-Messgerät ausgeschaltet wird.

9.4 Aktuelle Messwerte der Umgebungsparameter

Die Funktion ermöglicht das gleichzeitige Auslesen der Parameter aller aktuell an das Gerät angeschlossenen Sonnenlicht- und Temperaturmesser.

Koppeln Sie Temperatur- und Sonnenlichtmessgeräte mit dem Gerät.

	 ○ 10:54 ■ 26.07.2024 ← Umweltmess 	e Admin ungen	£
		IRM-1 (L22634) 💌	IRM-1 (L27523)
	E ₁ [W/m2]	900	900
	T _{PV1} [°C]	45,0	45,0
	T _{A1} [°C]	25,0	25,0
	Ø [°]	270	270
	∠ [°]	45	45
	Ø	U=12,1 V ==	
E - I T _{PV} - T _A -	Bestrahlungsstärke – Temperatur des PV-Mo Umgebungstemperatur – Abweichungswinkel vor – Neigung des Messgerät	duls n Norden tes relativ zum Referenzw	vinkel

müssen Sie die - siehe Abschnitt 9.3.4. iviesswerte korrigieren

5

1

Wenn Sie die aktuellen Messwerte speichern möchten, drücken Sie die START-Taste.

Sie können die Messergebnisse:

ignorieren und zum Messmenü zurückkehren,

erneut abrufen (ein Fenster zur Auswahl der Messung, die Sie wiederholen möchten, wird angezeigt),

SPEICHERN - in den Speicher schreiben,

SPEICHERN UND HINZUFÜGEN - einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Mes-sung gespeichert wurde,

IM VORHERIGEN SPEICHERN - das Ergebnis in dem Ordner/Gerät speichern, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde.

MeasureEffect | BEDIENUNGSANLEITUNG

9.5 Etikettendruck

9.5.1 Anschließen des Druckers

9.5.1.1 Kabelgebundene Verbindung

Schließen Sie den Drucker an einen der USB-Anschlüsse des Typs Host an.

Der Drucker ist unter **Einstellungen ► Zubehör** sichtbar.

9.5.1.2 Drahtlose Verbindung

Schalten Sie den Drucker ein und warten Sie, bis er mit der Übertragung seines WLAN-Netzwerks beginnt.

Gehen Sie im Messgerät zu Einstellungen ► Messgerät ► Kommunikation ► Wi-Fi.

Wählen Sie die vom Drucker gesendete Netzwerkübertragung aus. Der Drucker stellt innerhalb von 90 Sekunden eine Verbindung zum Messgerät her.

Der Drucker ist unter Einstellungen ► Zubehör sichtbar.

4

.

Gehen Sie zu Einstellungen ► Zubehör ► Drucken.

2

1

Gehen Sie zu den allgemeinen Druckeinstellungen. Hier können Sie einstellen:

- QR-Code-Typ
 - Standard speichert alle Informationen über das getestete Gerät: ID, Name, Messverfahrensnummer, technische Daten, Speicherort usw.
 - Verkürzt speichert lediglich die ID des getesteten Geräts und seinen Standort im Speicher des Messgeräts.
- Eigenschaften automatischer Ausdrucke
 - Automatischer Druck nach der Messung Automatischer Ausdruck nach Abschluss des Tests.
 - Faltbares Etikett Etikett mit einer Markierung versehen, um das Aufwickeln des Etiketts auf das Kabel zu erleichtern.
 - Etikett des Objekts Etikett mit dem Testergebnis des Geräts.
 - Etikett für verwandte Objekte Etikett mit dem Testergebnis des Geräts und des damit verbundenen Gegenstands (z. B. IEC-Netzkabel).
 - RCD-Etikett Etikett mit RCD-Testergebnis.
- Drucken Sie Linien, die angeben, nach wie vielen Monaten ein erneuter Test durchgeführt werden sollte. Drucklinien auf der linken, rechten oder beiden Seiten des Etiketts, abhängig von der Anzahl der Monate, nach denen ein weiterer Gerätetest durchgeführt werden soll. Zum Beispiel:
 - [3] die Linie auf der linken Seite des Ausdrucks zeigt einen 3-Monats-Zyklus an.
 - die Linie auf der rechten Seite des Ausdrucks zeigt einen 6-Monats-Zyklus an.
 - [12] die Linie auf der linken und rechten Seite des Ausdrucks zeigt einen 12-Monats-Zyklus an.
 - [0] [1] [0] es wird keine Linienvariante gedruckt, was einen nicht standardmäßigen Zyklus bedeutet.
- Zusätzliche Beschreibung des Etiketts vom Benutzer manuell eingegebene Anmerkung.

퍈

.

Gehen Sie zu den druckerspezifischen Einstellungen. Hier können Sie einstellen:

- Format der Objektbezeichnung
 - Detailliert enthält einen Fragenkatalog aus der Inspektion nebst Begutachtung und die Ergebnisse einzelner Messungen nebst Begutachtung.
 - Standard enthält das Gesamttestergebnis, Logo (falls ausgewählt) und zusätzliche Daten (Name des Geräts, Messgerät).
 - Kurzform wie Standard, jedoch ohne Logo und Zusatzinformationen.
 - Mini es werden nur die ID, der Name und der QR-Code des getesteten Geräts gedruckt.
- Pozostałe ustawienia
 - Zusätzliche Beschreibung des Etiketts ob hinzufügen ist oder nicht.
 - Kommentar zur Messung ob hinzufügen ist oder nicht.
- Beschreibung des geprüften Objekts ob hinzufügen ist oder nicht.

Die Einstellungen können mit der Software **Sonel PAT Analysis**, nachdem das Prüfgerät mit dem PC verbunden wurde, geändert werden.

9.5.3 Etikett mit dem Bericht drucken

Es kann in mehreren Fällen gedruckt werden: Wenn das Fenster **Etikett drucken** erscheint, aktivieren Sie das Kontrollkästchen für den ausgewählten Gerätetestzeitraum (siehe **Abschnitt 9.5.2**).

a

h

С

Beim Durchsuchen des Speichers – nach dem Hinzufügen eines neu gekauften, noch nicht getesteten Geräts mit werkseitiger Sicherheitsbestätigung. Eine solche Speicherzelle enthält keine Messergebnisse, wohl aber Identifikationsdaten und Geräteparameter (sofern diese eingegeben wurden). Wählen Sie das Symbol 📑 aus. Bevor Sie mit dem Befehl **DRUCKEN** ein Etikett drucken, können Sie:

- Einstellungen des Druckers ändern (==),
- Etikettenformat wählen,
- die allgemeinen Druckeinstellungen ändern (2).

In diesem Fall weist das Etikett darauf hin, dass die nächste Prüfung des Geräts nach **6 Monaten** erfolgen sollte.

Beim Anzeigen des Speichers. Wenn Sie zur Zelle mit Daten gelangt sind, wählen Sie das Symbol 🖶 aus. Bevor Sie mit dem Befehl **DRUCKEN** ein Etikett drucken, können Sie:

- Einstellungen des Druckers ändern (∃ ב),
- Etikettenformat wählen,
- die allgemeinen Druckeinstellungen ändern (2).

Nach Abschluss der Einzelmessung. Wählen Sie SPEICHERN. Wenn die Option Automatischer Druck nach der Messung (Abschnitt 9.5.2 🖏):

- aktiv ist, wird das Etikett sofort gedruckt,
- inaktiv ist, fragt das Messgerät nach dem Drucken.

d

Nach Abschluss der Messung im Automatikmodus. Wenn das Ergebnis angezeigt wird, fragt das Messgerät nach dem Drucken.

10.1 Datenbank für Photovoltaikmodule

PV-Anlagen werden durch die technischen Parameter ihrer Komponenten bestimmt. Hier werden Sie sie aufbewahren.

11 Speicher des Messgeräts

11.1 Struktur und Verwaltung des Speichers

Der Speicher für die Messergebnisse hat eine Baumstruktur. Er besteht aus übergeordneten Ordnern (maximal 100), in denen untergeordnete Objekte (maximal 100) verschachtelt sind. Die Anzahl dieser Objekte ist frei wählbar. Jedes beherbergt Unterobjekte. Die maximale Gesamtzahl der Messungen beträgt 9999.

Das Anzeigen und Verwalten der Speicherstruktur ist sehr einfach und intuitiv - siehe den Baum unten.

Datei

Gerät

Messung (und gehen Sie zum Menü Messung, um die Messung auszuwählen und durchzuführen)

Auf das Objekt fahren und:

11.

Optionen zeigen Objektdetails anzeigen

Objektdetails anzeigen

Objekt markieren und:

alle Objekte markieren

Markierte Objekte löschen

- Im Speichermenü können Sie sehen, wie viele Ordner (
) und Messergebnisse sich in einem Objekt befinden (11.).
- Wenn die Anzahl der Ergebnisse im Speicher ihr Maximum erreicht, kann das nächste Ergebnis gespeichert werden, sofern es das älteste Ergebnis überschreibt. In diesem Fall zeigt das Messgerät vor der Aufzeichnung eine entsprechende Warnung an.

11.2 Suchmaschine

Verwenden Sie die Suchmaschine, um den gewünschten Ordner oder das gewünschte Objekt schneller zu finden. Sobald Sie ein Symbol ${\bf Q}$ ausgewählt haben, geben Sie einfach den Namen des Gesuchten ein und tippen auf das entsprechende Ergebnis, um fortzufahren.

X test		B-
DD [YTR234832]		
DD tests	[YTR234834]	>
Sv [YTR234838-1]		
Sv test Sv	[YTR234838-2]	>
Epa [YTR234841]		
Epa test Epa	[YTR234842]	>
Riso [YTR234831]		
Riso tests Riso	[YTR234833]	>
Rcont [YTR234837]		
mont test	[VTR234838]	

11.3 Eingabe von Messergebnissen in den Speicher

Sie können Messungen auf zwei Arten aufzeichnen:

- indem Sie eine Messung vornehmen und diese dann einem Objekt in der Speicherstruktur zuweisen (<a>[-]),
- indem Sie auf ein Objekt in der Speicherstruktur zugreifen und eine Messung auf dieser Ebene vornehmen (+ ▶ 11.).

Sie können sie jedoch nicht direkt in den übergeordneten Ordnern speichern. Sie müssen ein untergeordnetes Objekt für sie einrichten.

11.3.1 Vom Messergebnis zum Objekt im Speicher

- Beenden Sie die Messung oder warten Sie, bis sie abgeschlossen ist.
- Speichern Sie das Ergebnis (SPEICHERN).
 - Erstellen Sie einen neuen Ordner/Gerät erstellen, der dem Ordner/Gerät entspricht, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde (**SPEICHERN UND HINZUFÜGEN**).
 - Speichern Sie das Ergebnis in dem Ordner/Gerät speichern, in dem das Ergebnis der zuvor durchgeführten Messung gespeichert wurde (**IM VORHERIGEN SPEICHERN**).

1

2

Wenn Sie **SPEICHERN** gewählt haben, öffnet sich ein Fenster, in dem Sie den Speicherort für das Ergebnis auswählen können. Wählen Sie den entsprechenden Ort und speichern Sie das Ergebnis dort.

11.3.2 Vom Objekt im Speicher zum Messergebnis

Navigieren Sie im Speicher des Messgeräts zu dem Ort, an dem die Ergebnisse gespeichert werden sollen.

Wählen Sie die Messung, die Sie durchführen möchten

Messung durchführen.

Speichern Sie das Ergebnis.

4

2

12 Software-Aktualisierung

- Vor Beginn der Aktualisierung laden Sie den Akku des Messgeräts zu 100% auf.
- Die Aktualisierung wird angefangen, wenn die Softwareversion auf dem Speicherstick neuerer als die zurzeit auf dem Messgerät installierte Version ist.
- Wenn die Aktualisierung läuft, schalten Sie das Messgerät nicht aus.
- Das Messgerät kann sich während der Aktualisierung automatisch aus- und einschalten.

13 Fehlersuche

Bevor Sie das Gerät zur Reparatur einschicken, rufen Sie unseren Service an. Vielleicht ist das Messgerät nicht beschädigt und das Problem wurde durch andere Gründe verursacht.

Das Messgerät kann nur in vom Hersteller autorisierten Werkstätten repariert werden.

Die Fehlersuche bei typischen Problemen bei der Verwendung des Messgeräts wird in der nachstehenden Tabelle beschrieben.

Symptom	Aktion	
Das Messgerät lässt sich nicht einschalten.	Laden Sie die Akkus oder schließen Sie das Netzteil an.	
Die Akkus laden nicht, obwohl das Netzteil angeschlossen ist.	Erwärmen oder kühlen Sie das Messgerät so, dass seine Temperatur im akzeptablen Bereich zum Laden der Akkus liegt.	
Messfehler nach Verbringen des Messgerätes von einer kühlen in eine warme Umgebung mit hoher Feuchtigkeit.	Keine Messungen vornehmen, bis das Messgerät die Umge- bungstemperatur erreicht oder getrocknet hat. Es wird empfohlen, das Messgerät in einem geschlossenen Gehäuse zu akklimatisieren, um Kondensation auf internen elektroni- schen Bauteilen zu vermeiden.	
Fehler ID_VALUE_ERROR_SAFETY_LOCK.	Fehler im PV-Stromkreis. Schicken Sie das Gerät an das Servicezentrum.	
Meldung Messgerät defekt. Es besteht die Gefahr der Lichtbogenzündung.	Trennen Sie das Messgerät vom Prüfobjekt auf schnelle und entschlossene Weise . Minimieren Sie das Brennen des Lichtbogens zwischen den getrennten Elementen. Schicken Sie das Gerät an das Servicezentrum.	
Keine Ergebnisse bei der Messung der I-U-Kurve.	Zu hohe Kapazität an den Messklemmen. Überprüfen Sie das Prüfobjekt und schließen Sie das Messgerät auf andere Weise daran an.	
Es gibt Probleme beim Aufzeichnen oder Ablesen von Messungen.	Speicher des Messgeräts optimieren (Abschnitt 1.5.7).	
Es gibt Probleme beim Navigieren durch Ordner gibt.		
Die Reparatur des Speichers des Messgeräts war nicht erfolgreich.	Casishar dag Maggarith zuwigkashar (Abashaitt 4 5 7)	
Es gibt Probleme, die eine Nutzung des Speichers unmög- lich machen.	- Speicher des Messgerats zurückseizen (Abschnitt 1.3. 7).	
Eine spürbare Verlangsamung des Messgeräts: lange Reaktionszeit bei Berührung des Bildschirms, Verzögerun- gen beim Navigieren in den Menüs, langes Schreiben in den Speicher usw.	Das Messgerät auf die Werkseinstellungen zurücksetzen (Abschnitt 1.5.7).	
Fehlercode.	Wenn der Fehler weiterhin besteht, schicken Sie das Mess- gerät an das Servicezentrum.	
Meldung FATAL ERROR und Fehlercode.	Wenden Sie sich an den Kundendienst und geben Sie den Fehlercode ein, um Hilfe zu erhalten.	
Das Messgerät reagiert nicht auf Benutzeraktionen.	Halten Sie die ①-Taste ca. 7 Sekunden lang gedrückt, um das Messgerät auszuschalten.	

14 Weitere vom Prüfgerät angezeigte Informationen

14.1 Elektrische Sicherheit

	 Das Vorhandensein einer Messspannung an den Klemmen des Messgeräts. Das geprüfte Objekt wird gerade geladen oder entladen.
2	Unterbrechung der Isolierung.
🔥 LÄRM	Auf dem zu prüfenden Objekt tritt eine Störspannung von mehr als 25 V DC aber weniger als 50 V auf. Die Messung ist möglich, kann aber mit zusätzlicher Unsicherheit versehen sein.
	Strombegrenzung aktiv. Das Symbol wir begleitet durch ein kontinuierli- ches Tonsignal.
	Unterbrechung der Isolierung des Objekts, die Messung wird unterbro- chen. Die Aufschrift wird nach der Aufschrift LIMIT I angezeigt und bleibt während der Messung für 20 s bestehen, wenn die Spannung zuvor den Nennwert erreicht hat.
UDET U _N >50 V	 An dem Objekt liegt eine gefährliche Spannung vor. Die Messung wird nicht durchgeführt. Zusätzlich zu den angezeigten Informationen: wird der U_N-Spannungswert am Objekt angezeigt, ertönt ein zweistimmiger Signalton, blinkt eine rote Diode.
	Die Entladung des Testobjekts ist im Gange.

14.2 Sicherheit der elektrischen Betriebsmittel

Spannung am Prüfgerät!	Spannung $U_{\text{N-PE}}$ > 25 V oder Unterbrechung des PE Durchgangs, Messungen werden blockiert.
Zu hoch U L-N!	Netzspannung > 265 V, Messungen werden blockiert.
LN	Korrekte Polarität des Netzes (L und N), Messungen sind möglich.
L <mark>X</mark> N	Falsche Polarität des Netzes, vertauschte Leiter L und N in der Netzdo- se des Prüfgerätes. Es werden automatisch L und N in der Prüfdose getauscht – Messungen sind möglich.
LN	Keine Kontinuität der L-Leitung.
LN	Keine Kontinuität der N-Leitung.
L <mark>y</mark> N	Kurzschluss der L- und N-Leitungen.

14.3 Fotovoltaik

Falsche Polarität!	Die Messleitungen sind vertauscht. Schließen Sie sie richtig an.
	 Das Vorhandensein einer Messspannung an den Klemmen des Messgeräts. Das geprüfte Objekt wird gerade geladen oder entladen.
Messgerät defekt. Es besteht die Gefahr der Lichtbogenzündung.	 Es besteht die Gefahr der Lichtbogenzündung. Schäden am IGBT-Transistor und Hauptrelais. Trennen Sie das Messgerät vom Prüfobjekt auf schnelle und ent- schlossene Weise. Minimieren Sie das Brennen des Lichtbogens zwischen den getrennten Elementen. Schicken Sie das Gerät an das Servicezentrum.
	Unterbrechung der Isolierung des Objekts, die Messung wird unterbro- chen. Die Aufschrift wird nach der Aufschrift LIMIT I angezeigt und bleibt während der Messung für 20 s bestehen, wenn die Spannung zuvor den Nennwert erreicht hat.
	 Trennen Sie das Messgerät vom Objekt! An dem Objekt liegt eine gefährliche Spannung vor. Die Messung wird nicht durchgeführt. Zusätzlich zu den angezeigten Informationen: wird der U-Spannungswert am Objekt angezeigt, ertönt ein zweistimmiger Signalton, blinkt eine rote Diode.
	Die Temperatur des Messgeräts ist zu hoch. Unterbrechen Sie die Messungen und warten Sie, bis das Messgerät abgekühlt ist.
	 Strombegrenzung aktiv. Zu große Kapazität des getesteten Objekts. Das Symbol wir begleitet durch ein kontinuierliches Tonsignal.
I _{SC} > 40,00 A	Zu hoher I_{SC} -Strom des geprüften Objekts. Überprüfen Sie das Prüfobjekt und schließen Sie das Messgerät auf andere Weise daran an.
	Auf dem zu prüfenden Objekt tritt eine Störspannung. Die Messung ist möglich, kann aber mit zusätzlicher Unsicherheit versehen sein.
	Die Entladung des Testobjekts ist im Gange.
o Xo	Die Messleitungen sind vertauscht oder verpolt. Die Messung ist blockiert.
• •	Störung – Kurzschluss im Prüfobjekt.
C	Störung – kein Durchgang beim Prüfobjekt.
<!-- -->	Der Messbereich wurde überschritten.

E ₁ < 700 W/m ²	 Der Sonneneinstrahlungswert ist niedriger als in der Norm IEC 61829 empfohlen. Bei Sonneneinstrahlung im Bereich von 100699,9 W/m² werden die Ergebnisse auf STC-Bedingungen umgerechnet. Bei Sonneneinstrahlung im Bereich von 099,9 W/m² werden die Ergebnisse auf STC-Bedingungen nicht umgerechnet. 	
E₁ ≠ E₂ [>2%]	Der Sonneneinstrahlung (E) unterscheidet sich um mehr als 2%.	
T _{PV1} ≠ T _{PV2} [>1°C]	Die Temperatur von Photovoltaikzellen (T_{PV}) unterscheidet sich um mehr als 1°C.	
IRM-1₁ [X]	Keine Verbindung zum Referenzgerät (Master) IRM-1.	
IRM-1 ₂ [X]	Keine Verbindung zum Zusatzgerät IRM-1.	
IRM-1 ₁ [X] IRM-1 ₂ [X]	Keine Verbindung zu Geräten IRM-1.	

15 Hersteller

Gerätehersteller für Garantieansprüche und Service:

SONEL S.A. Wokulskiego 11 58-100 Świdnica Polen Tel. +48 74 884 10 53 (Kundenbetreuung) E-Mail: <u>customerservice@sonel.com</u> Webseite: <u>www.sonel.com</u>

SONEL S.A.

Wokulskiego 11 58-100 Świdnica Polen

Kundenbetreuung

Tel. +48 74 884 10 53 E-Mail: customerservice@sonel.com

www.sonel.com